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Abstract

Diophantine analysis concerns the understanding of integer and rational solutions to multi-

variate polynomial equations. Our aim in this project is to study them, giving an introduction

to arithmetic geometry along the way. In particular, we shall see how viewing Diophantine

equations as geometrical objects have powerful consequences. Moreover, we shall look at some

modern number-theoretic tools — such as the p-adic numbers, L-functions and modular forms

— that have aided number theorists in solving some of the hardest problems in mathematics.

We will start our analysis with a demonstration of how geometry comes into the picture

of number theory, motivating via a concrete example. We then look at the conics, the curve

defined by quadratic polynomials. Here we show that there is a nice criterion of checking the

existence of rational points on a conic, and that if one has a rational point, then this point can

be used to find infinitely many other rational points on that conic. Then we look at the cubics,

the curve defined by cubic polynomials. It turns out that the problem of finding rational points

on general cubics reduces to the problem of finding rational points on elliptic curves, which,

unfortunately, we have yet to completely understand. However, we shall see that the study of

elliptic curves motivates some of the most captivating advancements in mathematics, such as

the proof of Fermat’s last theorem.
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Standard notation

The following symbols
Z, Q, R, C, Fp

denote the integers, rational numbers, real numbers, complex numbers and the finite field of p
elements, respectively. We will not use the notation N for the natural numbers due to its ambiguity.
Furthermore, if A is any set, then An denotes the n-fold Cartesian product of S. If R is a ring, then
R[x1, . . . , xn] denotes the polynomial ring over R in n indeterminates. Furthermore, the notation
R× denotes the group of units in R. If K is a field, then K(x1, . . . , xn) denotes the field of rational
functions. Moreover, K̄ denotes an algebraic closure of K.

1 What are Diophantine Equations?

Our central object of discussion are Diophantine equations.

Definition 1.1. Let f ∈ Q[x1, . . . , xn] be a polynomial. The polynomial equation

f(x1, . . . , xn) = 0

is said to be a Diophantine equation if we seek solutions in Z or Q.

Remark 1. We could have equally require f to have coefficients in Z instead of Q. This is
because if we have rational coefficients, we can always clear denominators by multiplication by an
appropriate integer.

Finding solutions in Z or Q is far harder compared to finding solutions in, say, R. This leads
to asking the following reasonable questions whenever solving Diophantine equations.

(1). Are there any integer and rational solutions?

(2). If there are, can we deduce finitely (or infinitely) many other solutions?

(3). If there are only finitely many solutions, can we prove that they are the only solutions?

(4). Are the solutions dependent on the coefficients of f?

With computational aid, the first one is not always difficult because sometimes we can do it by
inspection. However, the next few questions are usually quite difficult, hard enough to be a problem
unsolved for almost four centuries (to be precise, it was unsolved for 358 years). This problem
is the celebrated Fermat’s last theorem which is related to perhaps the most famous Diophantine
equation in existence, the Fermat equation

Xn + Y n − Zn = 0.

It was proven by Taylor-Wiles (see [30], [31]) that this equation does not have any solutions
(x, y, z) ∈ Z3 with xyz 6= 0 for n > 3. However, the methods they used are modern and highbrow.
In particular, it would be impossible that Fermat had actually found a proof as he once claimed. We
shall see what these methods are and discuss (very) briefly how they were used to prove Fermat’s
last theorem at the end of the paper (see Section 5.2).

Before we move on to more theory, let us give some definitions that we will use freely later.

Definition 1.2. Let f ∈ Q[x1, . . . , xn] be a polynomial and let d be a positive integer. We say f
is homogeneous of degree d if all the monomials in f occured with the same degree d.
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Remark 2. A homogeneous polynomial is also known as a form. We will look at a special case of
forms later on as they will be very useful. We will use the convention of writing indeterminates in
forms with capital letter X,Y, Z whereas writing indeterminates in non-homogeneous polynomials
with lowercased letter x, y, z.

Definition 1.3. We say a Diophantine equation is homogeneous of degree d if the polynomial
defining it is homogeneous of degree d.

As usual in mathematics, the examples are more important than the definitions.

Example. Examples of homogeneous Diophantine equations.

(i). X + Y + Z +W = 0 is a linear (i.e. degree 1) homogeneous Diophantine equation.

(ii). X2 +Y 2 = 3Z2 is a homogeneous Diophantine equation of degree 2; the polynomial defining
it is known as a quadratic form. We will look more at this later in Chapter 3.

(iii). X3 + 2XY 2 − Y 2Z + XY Z = 0 is a homogeneous Diophantine equation of degree 3; the
polynomial defining it is known as a cubic form.

(iv). The Fermat equation Xn + Y n = Zn is a degree n homogeneous Diophantine equation.

Example. Examples of non-homogeneous Diophantine equations.

(i). The equation y2 = x3 + 7 is not a homogeneous Diophantine equation. This equation is an
example of a Mordell’s equation.

(ii). The equation x2 − 22y2 = 1 is not a homogeneous Diophantine equation. This equation is
an example of a Pell’s equation.

Observe that in the case of a homogeneous Diophantine equation f(x1, . . . , xn) = 0, we would
always have (0, . . . , 0) as a solution. This is what we call a trivial solution of the Diophantine
equation, and we will ignore it. We only care about nontrivial solutions, and sometimes, we
demand an even stronger condition. Let (x1, . . . , xn) ∈ Qn be a solution to some Diophantine
equation. By demanding the condition

∏
i xi 6= 0, we have that xi is not all zero and so x is

nontrivial by definition. This condition allows us to disregard solutions that look like (1, 0) or
(0, 0, 0, 2/3) which in some sense, are also trivial depending on the Diophantine equation. For
example, (1, 0, 1) can be seen as a trivial solution to the Fermat equation for any n > 3.

We note that we are only interested in nonlinear Diophantine equations in this paper. A
treatment of the linear case can be found in virtually any elementary number theory textbook, for
example, in Rosen [19] and Silverman [25]. In the next chapter, Chapter 2, we begin our analysis
on Diophantine equations by demonstrating how to view a Diophantine equation as a plane curve.
We then proceed with our first attempt in finding rational points on these curves, and we do this
concretely by looking at the circles x2 + y2 = 1 and x2 + y2 = 3. We then look at the conics, the
curve defined by quadratic polynomials, in Chapter 3. Here we show that there is a nice criterion
due to Legendre (later generalized by Hasse and Minkowski) of checking, in a finite number of
steps, the existence of rational points on a conic. Moreover, by generalizing the method we used
on the unit circle, we will show that if one has a rational point on a conic, then this point can be
used to find infinitely many other rational points on the conic. In other words, the rational points
on a conic with at least one rational point is parametrizable.

Chapter 4 considers the cubics which are curves defined by cubic polynomials. We will first
see that all the rational points on singular cubics are parametrizable and showing this will be the
first goal of the chapter. For nonsingular cubics, the methods we know so far fail and we require
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new insights. It turns out that the problem of finding rational points on the general cubics reduces
to the problem of finding such points on so-called elliptic curves, which unfortunately, we have yet
to completely understand. Here, the true power of arithmetic geometry comes into sight as it turns
out that the rational points on an elliptic curve E can be made into an abelian group, denoted
by E(Q). Poincaré conjectured in 1901 that E(Q) is a finitely generated abelian group. This
conjecture was eventually proven by Mordell in 1922, and later generalized by Weil in 1928. Due
to the structure theorem of finitely generated abelian groups, understanding E(Q) now amounts
to understanding its torsion part and free part. The torsion part is well-understood thanks to the
work of Mazur in 1977; and so what is left is the free part which our hope right now is a $1,000,000
problem called the Birch and Swinnerton-Dyer conjecture.

In the concluding chapter, we define an important invariance in the setting of algebraic ge-
ometry called the genus which is a non-negative integer. As it turns out, the case of conics (resp.
cubics) corresponds to curves of genus 0 (resp. genus 1). This means that when the genus equals
0, the existence of one rational point implies the existence of infinitely many other rational points.
On the other hand, for curves of genus 1, the existence of one rational point may or may not
guarantee the existence of infinitely many other such points. It is then natural to ask whether it
is possible or not that nonsingular curves defined over Q with genus > 1 have infinitely many ra-
tional points. Mordell conjectured in 1922 that this is impossible, and this was proven by Faltings
in 1983. Finally, we shall look at the progress in proving Fermat’s last theorem throughout the
centuries. In particular, we will see how Taylor and Wiles, building on the work of many other
mathematicians such as Taniyama, Shimura, Weil, Frey, Ribet and Serre, used the theory of elliptic
curves in proving Fermat’s last theorem.
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2 Motivation: Geometry and Number Theory

We will first look at two special Diophantine equations and discuss their solutions.

2.1 The equation x2 + y2 = 1

Let us start with a discussion of solutions to the equation

x2 + y2 = 1. (2.1)

What would the solutions (x, y) to (2.1) in R2 be? It is obvious that (±1, 0) and (0,±1) are
solutions. Some trial and error also give (

√
3
2 ,

1
2 ) and ( 1√

2
, 1√

2
) as solutions. These are immediate

ones but at least we know there are solutions. If we are seeking solutions in Z2, it is easy to verify
that in fact (±1, 0) and (0,±1) are the only solutions. As a consequence, these are also the only
solutions in (Z/nZ)2 for any integer n > 2.

How about solutions in Q2? Aside from the integer ones that we have mentioned earlier,
( 3
5 ,

4
5 ) is one solution in Q2 since (3/5)2 + (4/5)2 = 1. But now observe that by multiplying 52

on both sides of the equation, we have 32 + 42 = 52. That is, the triple (3, 4, 5) is a Pythagorean
triple. This suggests that there is a correspondence between solutions to (2.1) and solutions to the
Pythagorean equation X2 + Y 2 = Z2. In fact, it is not too difficult to see this correspondence as
follows. If (x0, y0) is a solution in Q2 to (2.1), then we can choose a nonzero common denominator
c ∈ Z to write x0 = a/c and y0 = b/c where a, b ∈ Z, so that (a, b, c) satisfies X2 + Y 2 = Z2.
Conversely, if (a, b, c) ∈ Z3 with c 6= 0 is a Pythagorean triple, then the pair (a/c, b/c) solves (2.1).
Thus, if we can describe all the solutions in Q2 to (2.1), we get to describe all the solutions in Z3

to X2 + Y 2 = Z2. We will do so using methods of geometry.

From basic analytic geometry, we know that equation (2.1) defines a circle of radius 1 centred
at the origin which, from now on, we will denote as C. So finding rational solutions to this equation
is equivalent to finding rational points on the circle C. The question is how? Before we proceed,
let us make this definition precise.

Definition 2.1. Let K be a field. An algebraic plane curve defined over K is the set of points
(x, y) ∈ K̄2 such that f(x, y) = 0 for some f ∈ K[x, y]. In this case, we say that it is associate
to f and we denote it as Cf . An element of the plane curve is said to be a point on the curve. If
the context is clear, we will just write C, and call it a plane curve, or just curve.

Remark 3. The word algebraic in “algebraic plane curve” is for technical reasons due to algebraic
geometry. Since we will be only dealing with algebraic plane curves in this paper, we will simply
refer to it as plane curves. A handy piece of notation that we will use when defining plane curves
is the following: we will usually write a variant of “let C : f(x, y) = 0 be the plane curve” to mean
one of “let C be the plane curve associated to f(x, y)” or “ let C be the plane curve f(x, y) = 0”.
This makes things more readable.

Using our new definition, the unit circle is then the plane curve C : x2 + y2 = 1 defined
over the field Q. As we have seen, (1, 0) and ( 1√

2
, 1√

2
) are example of points on f as they satisfy

f(x, y) = 0.

Definition 2.2. Let C be a plane curve defined over Q. We say (x, y) is a rational point on C
if (x, y) ∈ C ∩Q2. That is, it is a point on C with coordinates in Q. The set of rational points on
C will be denoted C(Q).

Example. Since (−1, 0) and ( 3
5 ,

4
5 ) have rational coordinates and satisfy the equation f(x, y) = 0,
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they are rational points on C. However, the point (
√
3
2 ,

1
2 ) is not a rational point despite satisfying

f(x, y) = 0 as
√
3
2 /∈ Q.

Let us fix a rational point on C, say, P = (−1, 0). If (x, y) is any other arbitrary rational point
on C, then a straight line through the two points would have a rational slope as y/(x + 1) ∈ Q.
This is quite straightforward. There is an even more interesting observation which is less obvious.

Proposition 2.1. Let C be defined by (2.1) and let P = (−1, 0), which is a point on C. If
λ ∈ Q and Lλ is a line through P with slope λ, then it intersects another point Qλ in C which is
necessarily rational.

Note that by restricting λ ∈ Q, we do not allow Lλ to be a vertical line. This is an important
observation to note when we try to generalize this idea to general conics in Chapter 3.

Proof. Consider the line Lλ : y = λ(x + 1) with λ ∈ Q. A point (x, y) that is in the intersection
C ∩ Lλ must satisfy the simultaneous equation{

y = λ(x+ 1), (2.2)

x2 + y2 = 1. (2.3)

If we substitute (2.2) into (2.3), we would end up with an equation of the form

x2 + ax+ b = 0, (2.4)

for some a, b ∈ Q. Since we know that the x-coordinate of P , which is x0 = −1, must be a root
of (2.4), Vieta’s sum of roots formula gives us that x0 + x1 = −a where x1 is our other root.
Consequently, x1 ∈ Q as a and x0 are both rational. From (2.2), we then know y1 = λ(x1 + 1) is
rational. So (x1, y1) gives a rational solution to the original simultaneous equation. The proof is
done by taking Qλ = (x1, y1). �

In fact, it is not too hard to explicitly solve the system of equations defined by (2.2) and (2.3).
Plugging (2.2) into (2.3), we have

x2 + λ2(1 + x)2 = 1 =⇒ λ2(1 + x)2 = 1− x2 = (1− x)(1 + x).

Assume that x 6= −1 because otherwise we get our obvious rational point P . Then we can divide
both side by 1 + x to have

λ2(1 + x) = 1− x.

Solving for x in terms of λ, we have x = (1−λ2)/(1 +λ2). Consequently, we have y = 2λ/(1 +λ2).
This implies that Qλ in our preceding proposition is given by the explicit formula

Qλ =

(
1− λ2

1 + λ2
,

2λ

1 + λ2

)
.

Notice that we have actually established a bijectionQ→ C(Q)\ {P } via Proposition 2.1. Explicitly,
this bijection is given by the map λ 7→ Qλ. Such a correspondence is called a birational equivalence
which is a kind of isomorphism in the setting of algebraic geometry. This definition will be made
precise later on.

As promised earlier, we can now get a description for all solutions in Z3 to the Pythagorean
equation. To see this, write λ = s/t for some s ∈ Z, t ∈ Z+ with gcd(s, t) = 1. Then using our
explicit formula for Qλ, we get

Qλ =

(
1− λ2

1 + λ2
,

2λ

1 + λ2

)
=

(
s2 − t2

s2 + t2
,

2st

s2 + t2

)
.
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By using the relation x2 + y2 = 1, we see that(
s2 − t2

s2 + t2

)2

+

(
2st

s2 + t2

)2

= 1,

and further multiplying through by s2 + t2, we have

(2st)2 + (s2 − t2)2 = (s2 + t2)2.

From here, we immediately see that (2st, s2 − t2, s2 + t2) is a Pythagorean triple. In fact, we
can easily show that this triple is a primitive Pythagorean triple. That is, the greatest common
divisor of all three entries of the triple is 1. This is important as since the Pythagorean equation
is homogeneous of degree 2, then any integral multiple of this triple is also a solution. In other
words, the solution given above parametrized by s, t describes all possible Pythagorean triples.

2.2 The equation x2 + y2 = 3

Consider the equation x2 + y2 = 3. This has solutions in R2, and also defines a circle on the
plane, but now of radius

√
3. Unlike the case when the radius is 1, there are no rational points on

this curve. This can be seen by using a pure number-theoretic argument. Let us first recall the
definition of the Legendre symbol.

Definition 2.3. Let p be an odd prime and a ∈ Z. We define the Legendre symbol
(
a
p

)
by

(
a

p

)
=


+1, if a is a quadratic residue mod p,

0, if a is divisible by p,

−1, if a is not a quadratic residue mod p.

Lemma 2.1. Let x, y ∈ Z and let p be a prime such that p ≡ 3 (mod 4). If p divides x2 +y2, then
p divides both x and y.

Proof. Suppose for contradiction that p does not divide x. Since p divides x2 + y2, we have
y2 ≡ −x2 (mod p). This implies that

1 =

(
−x2

p

)
=

(
−1

p

)(
x2

p

)
=

(
−1

p

)
.

But this is a contradiction as −1 is not a quadratic residue modulo a prime p ≡ 3 (mod 4). The
same argument holds if we assume that p does not divide y. �

Proposition 2.2. The equation X2 + Y 2 = 3Z2 has no nontrivial integer solutions.

Proof. Suppose (x, y, z) is a nontrivial integer solution. Without loss of generality, we may assume
that gcd(x, y, z) = 1, for otherwise we can just divide by their common divisor. Since x2+y2 = 3z2,
3 clearly divides x2 + y2. By our preceding lemma, this implies that 3 divides both x and y. This
further implies that 9 divides both x2 and y2. Consequently, 9 divides 3z2 and so 3 divides z2. But
since 3 is prime, 3 divides z which is a contradiction to our hypothesis that gcd(x, y, z) = 1. �

By dividing the equation X2 + Y 2 = 3Z2 by Z2 on both sides and labelling x = X/Z and
y = Y/Z, the preceding proposition implies that the equation x2 + y2 = 3 has no solutions in Q2.

Corollary 2.1. There are no rational points on the circle x2 + y2 = 3.
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Observe the argument we used more closely. The idea in showing that the circle x2 + y2 = 3

has no rational points is by checking the related equation X2 +Y 2 = 3Z2 has no solutions modulo
the prime p = 3. We will see in the next chapter that this idea of looking at a related equation has
a nice consequence which enables us to generalize the above argument to arbitrary plane curves
defined by quadratic polynomials.
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3 Rational Points on Conics

Let us now consider the rational solutions to a general quadratic equation in two variables with
coefficients in Q. That is, we want to look at rational points on the curve C associated to the
polynomial

g(x, y) = ax2 + bxy + cy2 + dx+ ey + f,

where a, b, c, d, e, f ∈ Q. The curve C is called a conic because it defines a conic section —
the nondegenerate case being an ellipse, hyperbola or parabola. There are also the degenerate
(sometimes called singular) ones. A classification given by [17] tells us that a conic is degenerate
if it is a union of two lines — a single point, the empty set, and a line (single, double or parallel).

3.1 From one rational point to infinitely many

We have seen that there is a possibility that there are no rational points at all on a conic. This
was shown via the circle x2 + y2 = 3 which has no solutions in Q2. A natural question to ask is
then the following.

Question 3.1. When do conics have a rational point?

It turns out that this seemingly elementary question requires deeper insights and the goal of the
upcoming sections is to develop a theory to answer this. For now, let us take a step back and try to
find rational points on the general conic by using the same method we used to find rational points
on the unit circle C : x2 + y2 = 1. To do this, we take a closer look at the steps of our argument:

(1). We found one rational point P = (−1, 0) on C.

(2). We project lines with rational slope through P .

(3). All such lines intersect with another distinct rational point of C.

Clearly, the most important part of the argument is to first find one rational point for otherwise,
the succeeding steps become meaningless. Once we find such a point, we can project lines through
this point. But one question that is still lingering is the following.

Question 3.2. Does every projected line, except those tangent to the conic at this point, intersects
the conic at another distinct point?

The answer is no. Here are some immediate counterexamples.

Example.

(i). The conic C : x2 + y2 = −3 tautologically gives a no to our question as the set of real (not
even rational) points on C is the empty set.

(ii). The circle with zero radius C : x2 + y2 = 0 is a conic. However, C contains only the single
point (0, 0). So, a line through this point with any slope does not hit the conic at another
point.

(iii). The single line L : y − 2x = 0 through the origin is itself a conic. But choose any real point
P and no non-tangential lines projected through P meets L at some other point.

(iv). The double line L : xy = 0 is also a conic. However, this case is no different than the
preceding example (iii).

What do these examples have in common? They are degenerate conics — (i) is the empty set,
(ii) is a single point, (iii) and (iv) are lines. There is also a slight problem for the nondegenerate
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ones and we demonstrate this via an example. Consider running the argument on the parabola
C : y = x2 by starting with the minima 0 = (0, 0) which is a rational point on C. When projecting
lines through 0, we may encounter two possible problematic lines that were not present in our unit
circle example. These are the tangent line y = 0 and the vertical line x = 0. The tangent line
y = 0 is not truly a problem as it still have rational slope and we can just say that the line y = 0

intersects C at 0 twice. We then say that the intersection multiplicity of C and the line y = 0 at 0
is 2. When the curve C that is intersecting is clear, we simply say that 0 occurs with multiplicity
2. The vertical line x = 0 is much more problematic. However, we can solve this issue by allowing
the line to have a slope of infinity. To do this, we say that the line through a point (x0, y0) on the
conic has slope infinity, denoted ∞, if it is the line x = x0. For the parabola C and the line x = 0,
we see that 0 again occurs with multiplicity 2. By taking care of all these cases, we have a quite
satisfying answer whenever we already have one rational point on a conic.

Theorem 3.1. Let C be a nondegenerate conic defined by f ∈ Q[x, y], and let P ∈ C(Q). If Lλ
is a line through P with slope λ ∈ Q ∪ {∞}, then it intersects at a point Qλ ∈ C(Q), dependent
on λ, which is distinct from P unless Lλ is the tangent line to C at P .

We give a proof that builds on one that was given by Lozano-Robledo [12].

Proof. Let C be the conic f(x, y) = 0, and let P ∈ C(Q), say P = (x0, y0). Let Lλ be the line

Lλ :

y − y0 = λ(x− x0), if λ ∈ Q,

x = x0, if λ =∞.

If λ =∞, the intersection C ∩ Lλ is defined by the polynomial

p∞(y) = f(x0, y).

If otherwise λ ∈ Q, the intersection C ∩ Lλ is defined by the polynomial

pλ(x) = f(x, λ(x− x0) + y0).

Observe that both these polynomials are defined over Q and have degree at most 2 (because f
defines a conic). For brevity, we can define a single polynomial of intersection

pλ(ξ) =

f(ξ, λ(ξ − x0) + y0), if λ ∈ Q,

f(x0, ξ), if λ =∞,

but keeping in mind that the variables admit different values. By applying the Fundamental
Theorem of Algebra, we know that either pλ(ξ) has at most 2 real roots (counting multiplicities)
or pλ(ξ) is identically zero (i.e. zero for all ξ). But if pλ(ξ) is identically zero, then every point
on Lλ is a point on C. That is, C contains the line Lλ and so must be a degenerate conic. This
contradicts our hypothesis, so we must have that pλ(ξ) is not the zero polynomial, and thus has at
most 2 real roots counting multiplicities. If there is only one unique root, we are done by taking
Qλ = P . Otherwise, assume we have exactly two distinct roots so that pλ(ξ) has degree exactly 2.
We now want to prove two things: that the other root is in Q, and that it defines a rational point
on C. To do this, we look at the two cases of pλ(ξ) separately. If λ ∈ Q, then clearly x0 is the first
root of pλ(ξ). Accordingly, we may write pλ(ξ) = (x− x0) q(ξ) for some polynomial q ∈ Q[ξ] with
q(x0) 6= 0. Clearly, deg q = 1 (because deg pλ = 2) and so we can write q(ξ) = a ξ + b for some
a, b ∈ Q where a 6= 0. Our second root is thus given by x1 = −b/a, the root of q, which is rational
since q is defined over Q. To get the second rational point on C, we use the equation of the line
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Lλ. We see that y0 = λ(x1−x0) + y0 which is rational and so Qλ = (x1, y1) gives another rational
point on C. On the other hand, if λ =∞, the argument is identical. Instead of x0, we see that y0
is the first root of pλ(ξ). By running the same argument, we get a second rational root y1 and so
Qλ = (x0, y1) gives another rational point on C. �

3.2 Non-triviality condition 1: Legendre’s theorem

So we now know that if we can find one rational point on a nondegenerate conic, then we can
find infinitely many other rational points. But how do we guarantee the existence of one rational
point? This was the question posed in Question 3.1. Now, we ask a more precise question.

Question 3.3. How do we guarantee the existence of a single rational point on a conic? Is there
a characterization of the conic which says something about the existence of rational points on it?

For example, is it possible to say with absolute certainty that the conic

C : 66564x2 + 8084y2 − 1548x− 91 = 0 (3.1)

has a rational point on it? To tackle this question, we need to first talk about quadratic forms.

3.2.1 Quadratic forms

Recall that under a change of variables, there is a map to go from the polynomial x2 + y2 − 3 to
the homogeneous polynomial X2 + Y 2 − 3Z2. As we have seen in Chapter 1, we call the latter
polynomial a quadratic form. Here we redefine this carefully.

Definition 3.1. A quadratic form q(X1, . . . , Xn) is a degree 2 homogeneous polynomial defined
over Q. We can extend this definition to define quadratic forms defined over Z which we will call
an integral quadratic form. We will usually write the variables in a tuple X = (X1, . . . , Xn)

and so write q(X) = q(X1, . . . , Xn).

Example. We look at one example and one non-example.

(i). A particular case of interest for us is the case n = 3, called a ternary quadratic form. For
example, aX2 + bY 2 = cZ2 is an equation defined by a ternary quadratic form. By taking
a = b = c = 1, we recover Fermat’s equation with exponent 2.

(ii). X3 + 9XY Z − 9Z3 + 8YW 2 is not a quadratic form since it is a homogeneous polynomial of
degree 3.

Our first result regarding quadratic forms is a very useful one.

Lemma 3.1. Let q(X) be a quadratic form. Then for any λ ∈ C, we have

q(λX) = λ2q(X).

Proof. Since q(X) is a quadratic form, it is a homogeneous polynomial by definition so we can
write

q(X) = q(X1, . . . , Xn) =

n∑
i=1

n∑
j=1

aijXiXj ,

13



where aij ∈ Q. Take any λ ∈ C and observe that

q(λX) = q(λX1, . . . , λXn) =

n∑
i=1

n∑
j=1

aij(λXi)(λXj)

= λ2
n∑
i=1

n∑
j=1

aijXiXj

= λ2q(X1, . . . , Xn)

= λ2q(X),

as desired. �

There’s nothing special about quadratic forms here. If f(X) is a homogeneous polynomial of
degree d over Q, then the identity f(λX) = λdf(X) also holds for all λ ∈ C. The proof is similar
as one can use the same construction as above.

Lemma 3.2. If q(X) is an integral quadratic form, then the equation q(X) = 0 has a solution in
Zn if and only if it has a solution in Qn.

Proof. The direction (⇒) is clear since Z ⊆ Q, and so Zn ⊆ Qn. We prove the converse. Suppose
(x1, . . . , xn) ∈ Qn is a solution of q(X) = 0. By choosing λ to be the least common multiple of the
denominators of xi, we have that λxi ∈ Z for all 1 6 i 6 n. Now applying Lemma 3.1, we see that

q(λx1, . . . , λxn) = λ2q(x1, . . . , xn) = 0.

This implies that (λx1, . . . , λxn) ∈ Zn is a solution to q(X) = 0. �

Recall the Pythagorean equation X2 + Y 2 = Z2 which is defined by a ternary quadratic
form. We call a triple (x, y, z) a primitive Pythagorean triple if it is a Pythagorean triple with
gcd(x, y, z) = 1. Motivated by this definition, we define an analogous definition for solution of
general quadratic forms.

Definition 3.2. Let q(X) be an integral quadratic form. The tuple x = (x1, . . . , xn) ∈ Zn is
called a primitive solution of q(X) = 0 if

(1). q(x) = 0,

(2). gcd(x1, . . . , xn) = 1.

The set of primitive solutions of q(X) = 0 is denoted as Prim(q).

Example. Primitive solutions of X2 + Y 2 = Z2 is the primitive Pythagorean triples.

We now show that we can always construct a primitive solution once we have a nontrivial
integer solution.

Lemma 3.3. Let q(X) be an integral quadratic form. If q(X) = 0 has a nontrivial solution in
Zn, then it has a primitive solution.

Proof. Suppose (y1, . . . , yn) is a nontrivial solution in Zn to the equation q(X) = 0, and let
d = gcd(y1, . . . , yn). By hypothesis, at least one yi is nonzero, and so d is well-defined. By
definition, d | yi for each i and thus yi/d = xi for some xi ∈ Z. Then observe that

q(x1, . . . , xn) = q
(y1
d
, . . . ,

yn
d

)
=

1

d2
q(y1, . . . , yn) = 0,
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so x = (x1, . . . , xn) is a solution to q(X) = 0. Since at least one yi is nonzero, we have at least
one xi being nonzero so x is a nontrivial solution. Moreover, we have that gcd(x1, . . . , xn) = 1 by
construction. Together, this gives x as a primitive solution of q(X) = 0, as desired. �

The reason why quadratic forms are useful is the following. It turns out that we can always
homogenize a quadratic equation. Let g(x, y) be a generic non-homogeneous quadratic polynomial

g(x, y) = ax2 + bxy + cy2 + dx+ ey + f,

defined over Z, and consider the integral quadratic form

q(X,Y, Z) = aX2 + bXY + cY 2 + dXZ + eY Z + fZ2,

with the same coefficients. Then we can homogenize g(x, y) by the change of variables x = X/Z

and y = Y/Z so that we have

q(X,Y, Z) = Z2g

(
X

Z
,
Y

Z

)
.

Of course, to do this we need to impose the condition that Z 6= 0 which we will always implicitly
assume when homogenizing a polynomial. We thus should expect a natural correspondence: if
q(X,Y, Z) = 0 has a nontrivial integral solution in Z3, then g(x, y) = 0 has a rational point and
vice-versa. Due to this correspondence, we give it a name.

Definition 3.3. Let g ∈ Z[x, y] be a quadratic polynomial. The ternary quadratic form q(X,Y, Z)

is said to be associated to g if q = Z2g(X/Z, Y/Z).

Remark 4. Since g ∈ Z[x, y], it should be well understood that the homogenization Z2g(X/Z, Y/Z)

is also defined over Z. So whenever we say a (ternary) quadratic form associated to g, we mean
that it is an integral quadratic form.

Example. Some immediate examples of associated quadratic forms.

(i). The quadratic form associated to x2 + y2 − 1 is X2 + Y 2 − Z2.

(ii). The quadratic form associated to the polynomial defining (3.1) is

q(X,Y, Z) = 66564X2 + 8084Y 2 − 91Z2 − 1548XZ.

Consider q(X,Y, Z) = X2 + Y 2 − Z2, the quadratic form associated to f(x, y) = x2 + y2 − 1.
Then we know from Chapter 2 that by imposing certain conditions on s, t ∈ Z, we get that
(2st, s2 − t2, s2 + t2) ∈ Prim(q). That is, the triple parametized by s, t are primitive Pythagorean
triples. We have also seen that the rational numbers(

s2 − t2

s2 + t2
,

2st

s2 + t2

)
,

gives a rational point on Cf . So we can see that there is a correspondence here between primitive
solutions of q = 0 and rational points on Cf given by

(2st, s2 − t2, s2 + t2)←→
(
s2 − t2

s2 + t2
,

2st

s2 + t2

)
. (3.2)

It is then natural to ask whether this holds for a general quadratic polynomial and its associated
quadratic form — the answer is positive.

Theorem 3.2. Let g ∈ Z[x, y] be a quadratic polynomial and let q(X,Y, Z) be its associated
quadratic form. Then there is a bijection Prim(q) −→ Cg(Q).
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Of course, now, we do not have the luxury of having an explicit form for elements in Prim(q),
but we can still mimic (3.2). The map α : Prim(q)→ Cg(Q) defined by

(a, b, c) 7−→
(
a

c
,
b

c

)
,

should be a good candidate for our bijection. Instead of showing this directly, it is easier to show
that α is invertible by finding an explicit inverse map. This is both a sufficient and necessary
condition for α to be bijective. The question now is, what is the inverse map of α? We need to
find a map that sends rational points to primitive solutions; with emphasis on the word primitive
(this is the tricky part). Here is our construction.

Proof of Theorem 3.2. Consider the map β : Cg(Q)→ Prim(q) defined by

(x, y) 7−→
(
λx

d
,
λy

d
,
λ

d

)
,

where λ is any integer such that λx, λy ∈ Z and d = gcd(λx, λy, λ). We claim that β is the inverse
map of α. Let (x, y) ∈ Cg(Q). Then its image under α ◦ β is

(x, y)
β−−→

(
λx

d
,
λy

d
,
λ

d

)
α−−→ (x, y),

and so α ◦ β is the identity map Cg(Q)→ Cg(Q). If we consider (a, b, c) ∈ Prim(q), then its image
under β ◦ α is

(a, b, c)
α−−→

(
a

c
,
b

c

)
β−−→

(
aλ

cd
,
bλ

cd
,
λ

d

)
= (a, b, c),

where λ = c and d = gcd(a, b, c) = 1. So β ◦ α is the identity map Prim(q)→ Prim(q). Therefore,
we conclude that β is the inverse map of α and so, α is invertible as desired. �

Our bijection due to Theorem 3.2 now says that to talk about a generic conic, it suffices to
talk about its associated quadratic form. So we will do exactly that from now, but first, let us look
at one example.

Example. There is a bijection between rational points on the circle ax2 + by2 = r2 and primitive
solutions of the equation aX2 + bY 2 = r2Z2, where a, b, r ∈ Z.

Proof. The bijection is immediate by considering the quadratic g(x, y) = ax2 + by2 − c, where
a, b, c ∈ Z, in Theorem 3.2. Since c ∈ Z is arbitrary, we can take it to be a perfect square c = r2

for some r ∈ Z.

This example is essentially a generalization (for circles) of the bijection we had between rational
points on the unit circle x2 + y2 = 1 and the primitive Pythagorean triples (which are solutions to
the Pythagorean equation X2 + Y 2 = Z2).

3.2.2 Legendre’s theorem

We now discuss the main theorem of this section. Observe that the ternary quadratic form

q(X,Y, Z) = aX2 + bXY + cY 2 + dXZ + eY Z + fZ2, (3.3)
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where a, b, c, d, e, f ∈ Z can be written as the product q = X>AX where X = (X,Y, Z) and A is
the real (in fact, rational) symmetric matrix

A =


a b/2 d/2

b/2 c e/2

d/2 e/2 f

 .

It should be clear that we can actually do this in general. That is, we can always write q(X) =

X>AX where X = (X1, . . . , Xn) and A is some real symmetric matrix. Now recall this beautiful
theorem from linear algebra which we will state without proof.

Theorem 3.3. Every real matrix is symmetric if and only if it is orthogonally diagonalizable.

This gives the following powerful theorem which will be very useful for us.

Theorem 3.4 (Principal axis theorem). Let q(X) = X>AX be a quadratic form where X =

(X1, . . . , Xn) and A is a real symmetric matrix. Then there exists an orthogonal matrix O so that
with Y = (Y1, . . . , Yn) = OX, we have

q(Y ) =

n∑
i=1

diY
2
i ,

where d1, . . . , dn is the diagonal entries of the diagonal matrix OAO>.

In other words, there is an (invertible) change of variables so that the product YiYj vanishes
for all i 6= j. In the case of ternary quadratic forms, this means that there is a change of variables
so that (3.3) becomes

q(U, V,W ) = αU2 + βV 2 + γW 2.

for some α, β, γ ∈ Z. We call this process the diagonalization of the quadratic form q. The proof
of Theorem 3.4 is just a simple application of Theorem 3.3.

Proof. Since A is real symmetric, Theorem 3.3 implies the existence of an orthogonal matrix O
such that D = OAO> is diagonal. We can then rewrite this relation as A = O>DO, so that we
have X>AX = (OX)>D(OX) = Y >DY where we have put Y = (Y1, . . . , Yn) = OX. Since D
is diagonal, we get precisely q(Y ) as desired. �

The principal axis theorem tells us the following: from now on, to talk about the solutions of
a ternary quadratic form, it suffices to talk about the solutions of the (much simpler) equation

q(X,Y, Z) = aX2 + bY 2 + cZ2 = 0. (3.4)

In fact, we can make this already simple equation much simpler. We observe that there is no loss
in generality here if we assume gcd(a, b, c) = 1; for otherwise, just divide by their greatest common
divisor. Now, suppose one of the coefficients in (3.4) is zero, say, b = 0. Then

aX2 + cZ2 = 0 ⇐⇒ −a
c

=

(
Z

X

)2

,

and so (3.4) has a nontrivial solution if and only if −a/c is the square of some rational number. So
we may assume that none of a, b, c are zero for otherwise we are essentially done with the problem
of searching for solutions. We may also assume that a, b, c are squarefree. To see this, we have to
look at factorizations. For example, factorize b into a squarefree part and a nonsquarefree part by
writing b = b′s2 where b′ is squarefree. Then we can write bY 2 = b′(sY )2 = b′Y ′2. So by applying
a transformation similar to sY 7→ Y ′, we can always make the coefficients squarefree and this idea
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applies to a and c as well. Finally, we may also assume that a, b, c are pairwise coprime. Let p be
a prime such that p | a and p | b so that p | (aX2 + bY 2) = −cZ2. Since gcd(a, b, c) = 1, p does
not divide c and so p divides Z. This implies that we can write Z = pU for some U ∈ Z and so
(3.4) becomes

aX2 + bY 2 + c(pU)2 = 0.

Dividing both sides by p, we further have

a

p
X2 +

b

p
Y 2 + cpU2 = 0.

Observe that initially we had p as a common divisor of a and b, but now p is a common divisor
of only cp in this set of coefficients a/p, b/p, cp. We can keep repeating this procedure until the
coefficients defining the quadratic form are eventually pairwise coprime. Under these assumptions,
there is an elegant theorem due to Legendre that gives the existence of solutions to (3.4).

Theorem 3.5 (Legendre, 1785). Let a, b, c ∈ Z be nonzero, pairwise coprime and squarefree. Then
the equation

aX2 + bY 2 + cZ2 = 0 (3.5)

has a nontrivial solution in Z3 if and only if

(1). a, b, c do not all have the same sign.

(2). −bc, −ac and −ab are quadratic residues modulo a, b and c respectively.

We will give a proof due to Niven et al. [15]. For this, we will need three lemmas.

Lemma 3.4. Let n ∈ Z and let α, β, γ be positive real numbers such that αβγ = n. Then for any
a, b, c ∈ Z, there is a solution (x, y, z) ∈ Z3 not all zero to the congruence equation ax+ by+ cz ≡ 0

(mod n) which satisfies |x| 6 α, |y| 6 β and |z| 6 γ.

If x ∈ R, we will write bxc to denote the greatest integer less than or equal to x. The operator
b·c is called the floor function and should be familiar. By definition of the floor function, we know
that bxc 6 x < bxc + 1. This is an important property which we will use in the proof of this
lemma.

Proof. Fix a, b, c ∈ Z. Consider the following set of triples

S =
{

(x, y, z) ∈ Z3 : 0 6 x 6 bαc , 0 6 y 6 bβc , 0 6 z 6 bγc
}
.

We easily see that |S| = (1 + bαc)(1 + bβc)(1 + bγc), and so by definition of the floor function,
we deduce that |S| > αβγ = n. By the pigeonhole principle, there must then exist two triples
(x1, y1, z1), (x2, y2, z2) ∈ S such that

ax1 + by1 + cz1 ≡ ax2 + by2 + cz2 (mod n),

or equivalently
a(x1 − x2) + b(y1 − y2) + c(z1 − z2) ≡ 0 (mod n).

Surely, |x1 − x2| 6 bαc 6 α, |y1 − y2| 6 bβc 6 β and |z1 − z2| 6 bγc 6 γ, and so the desired triple
is given by (x, y, z) with x = x1 − x2, y = y1 − y2 and z = z1 − z2. Since a, b, c were arbitrary, the
claim follows. �

Lemma 3.5. Let m,n be coprime positive integers and let q(X,Y, Z) = aX2 + bY 2 + cZ2 be an
integral quadratic form. If q(X,Y, Z) can be written as a product of linear factors modulo m and
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n, then it can be written as a product of linear factors modulo mn.

Proof. Suppose that we can write

q(X,Y, Z) ≡ (amX + bmY + cmZ)(dmX + emY + fmZ) (mod m),

q(X,Y, Z) ≡ (anX + bnY + cnZ)(dnX + enY + fnZ) (mod n).

Since m and n are coprime, the Chinese remainder theorem implies that there exists an integer
α such that α ≡ am mod m and α ≡ an mod n. Similarly, there exist integers β, γ, δ, ε, ϕ with
β ≡ bm mod m and β ≡ bn mod n, γ ≡ cm mod m and γ ≡ cn mod n, so on and so forth. The
existence of these integers then implies that we can write

q(X,Y, Z) ≡ (αX + βY + γZ)(δX + εY + ϕZ) (mod mn),

which is a product of linear factors modulo mn as desired. �

Lemma 3.6. Let n be a positive integer such that −1 is a quadratic residue modulo n. Then n

can be written as a sum of two squares.

We shall prove this lemma using Fermat’smethod of infinite descent. For the readers unfamiliar
with this concept, this is a method that is very useful in both proving and disproving existence of
solutions to a certain Diophantine equation. In our case, we will see that the assumptions of the
lemma allow us to find integers u, v such that u2 + v2 = αn for some positive integer α < n. We
then proceed with the descent step, where we do some mathematical magic to get a new pair of
integers s, t such that s2 + t2 = βn with β < α < n. The fact that β < α is the main point of the
process, and this justifies the terminology descent. It turns out that there is nothing stopping us
to do this indefinitely until we get a pair of integers x, y such that x2 + y2 = 1n, for which n is
now a sum of two squares. That is the idea of the proof, so let us begin.

Proof. By assumption, there exists u ∈ Z such that −1 ≡ u2 mod n. So by definition, we can find
an integer 0 < α < n such that u2 + 1 = αn. If we put v = 1, then (u, v) gives a solution to the
equation x2 + y2 = αn. That is, we have

u2 + v2 = αn.

If α = 1, we are done. So assume that 1 < α < n. Now, choose a, b ∈ Z so that the integers

s = u− aα, t = v − bα

satisfy the constraints |s|, |t| 6 α/2. We then see that the sum s2 + t2 is bounded

0 < s2 + t2 6 2
(α

2

)2
=
α2

2
< α2. (3.6)

We now make three observations:

(i). Firstly, observe that

s2 + t2 ≡ (u2 + α terms) + (v2 + α terms) ≡ u2 + v2 ≡ 0 (mod α).

By definition, this means that that there exists β ∈ Z such that s2 + t2 = βα. Moreover the
bound (3.6) implies that 0 < β < α.

(ii). Secondly, su+ tv ≡ u(u− aα) + v(v − bα) ≡ u2 + v2 ≡ 0 (mod α).
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(iii). Thirdly, sv − tu ≡ v(u− aα)− u(v − bα) ≡ 0 (mod α).

Then, we consider the product βα2n to see that

βα2n = (βα)(αn) = (s2 + t2)(u2 + v2)

= s2u2 + s2v2 + t2u2 + t2v2 + 2suvt− 2suvt

= (su+ tv)2 + (sv − tu)2.

Dividing through by α2, we thus have

βn =

(
su+ tv

α

)2

+

(
sv − tu
α

)2

.

From observation (ii) and (iii), it follows that the pair
(
su+tv
α , sv−tuα

)
defines an integer solution to

the equation x2 + y2 = βn. We emphasize observation (i) that 0 < β < α, and so this completes
the descent step as we have made the appearing factor smaller. Now if β = 1, we are done. If
otherwise β > 1, we can repeat the descent step indefinitely until the factor is 1, for which then n
is a sum of two squares. �

We are now in a position to prove Legendre’s theorem.

Proof of Legendre’s Theorem 3.5. We first prove the (⇒) direction. Suppose (x, y, z) ∈ Z3 is a
nontrivial integer solution to (3.5) so that we get

ax2 + by2 + cz2 = 0. (3.7)

Then surely a, b, c must not all have the same sign for otherwise the equation does not even have
real solutions; so we get statement (1). We now want to show (2). Without loss of generality,
we can assume that the triple (x, y, z) is primitive for if not, we can just divide by their greatest
common divisor.

We first claim that gcd(a, z) = 1. Suppose not. Then there is a prime number p such that p
divides both a and z. From here, we can make two observations:

(i). We have p2 | z2.

(ii). We have p | z2 and so p | by2 since we see from (3.7) that by2 = −(ax2 + cz2).

From observation (ii), we deduce that p | y2 since p cannot possibly divide b (as a, b, c are pairwise
coprime). But since p is prime, then this implies that p | y and so p2 | y2. Using observation (i),
we then further deduce that p2 divides by2 + cz2 which we see from (3.7) is equal to −ax2. So
p2 | ax2. But since a is squarefree by assumption, it follows that p2 - a and thus we conclude that
p | x. However, this is a contradiction since we have essentially demonstrated that p divides all
three of x, y, z whereas we assumed initially that (x, y, z) is a primitive solution. So we must have
gcd(a, z) = 1.

Since gcd(a, z) = 1, there exists an element u ∈ Z such that uz ≡ 1 (mod a) i.e. u is the
inverse of z modulo a. We can reduce equation (3.7) modulo a to get

by2 + cz2 ≡ 0 (mod a).

Multiplying this congruence equation by u2b on both sides, we have

u2b2y2 + bc (uz)2︸ ︷︷ ︸
≡1

≡ 0 (mod a),
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which implies that
−bc ≡ (uby)2 (mod a).

That is, −bc is a quadratic residue modulo a. By symmetry, we can apply the same reasoning
to conclude that −ac and −ab are quadratic residues modulo b and c, respectively. So we get
statement (2).

(⇐). Assume that a, b, c do not all have the same sign, and that −bc, −ac and −ab are
quadratic residues modulo a, b and c respectively. We now want to show that there is a nontriv-
ial integer solution (x, y, z) ∈ Z3 to the equation q(X,Y, Z) = 0 where q is the quadratic form
q(X,Y, Z) = aX2 + bY 2 + cZ2.

Firstly, we make the observation that if any of a, b, c changes sign, then the latter assumption
above still hold true. So without loss of generality, we may assume that a > 0 and b, c < 0. We
now consider two integers that will make our computation neat:

(i). Since −bc is a quadratic residue modulo a, then there exists an integer s such that
−bc ≡ s2 mod a.

(ii). Since gcd(a, b) = 1, then there exists an integer u such that ub ≡ 1 mod a.

Then, reduce q(X,Y, Z) modulo a to get

q(X,Y, Z) ≡ bY 2 + cZ2 (mod a),

≡ ub(bY 2 + cZ2) (mod a),

≡ u(b2Y 2 + bcZ2) (mod a),

≡ u((bY )2 − (sZ)2) (mod a),

≡ u(bY − sZ)(bY + sZ) (mod a),

≡ (Y − usZ)(bY + sZ) (mod a).

So we see that q(X,Y, Z) is a product of linear factors modulo a. By symmetry, one can further
show that q(X,Y, Z) can be written as a product of linear factors modulo b and c as well. Since
a, b, c are pairwise coprime, we can then apply Lemma 3.5 with integers a and b, and then apply
Lemma 3.5 again with integers ab and c to conclude that q(X,Y, Z) can be written as a product
of linear factors modulo abc. That is, there exist integers α, β, γ, δ, ε, ϕ such that

q(X,Y, Z) ≡ (αX + βY + γZ)(δX + εY + ϕZ) (mod abc). (3.8)

Now, we make the fundamental observation that the real numbers
√
bc,

√
|ac|,

√
|ab| are

positive and satisfy
√
bc
√
|ac|
√
|ab| =

√
a2b2c2 = abc ∈ Z. It follows that we can apply Lemma

3.4 to find a solution (x, y, z) ∈ Z3 not all zero to the congruence equation

αX + βY + γZ ≡ 0 (mod abc),

satisfying the constraints |x| 6
√
bc, |y| 6

√
|ac|, |z| 6

√
|ab|. But αX + βY + γZ is just a linear

factor modulo abc in (3.8). So (x, y, z) passes to a solution of the congruence equation

q(X,Y, Z) ≡ 0 (mod abc). (3.9)

In other words, abc divides q(x, y, z).

Next, we look closely at the constraints on |x|, |y|, |z|. Since a, b, c are squarefree and pairwise
coprime, it follows that any two product of them is squarefree. This implies that

√
bc ∈ Z if and
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only if
√
bc = 1. In other words, the inequality |x| 6

√
bc attains equality if and only bc = 1

i.e. when b = c = −1. Using the same line of reasoning, we can conclude that the inequality
|y| 6

√
|ac| attains equality if and only if a = 1, c = −1, and that the inequality |z| 6

√
ab attains

equality if and only if a = 1, b = −1. In these last two cases, we can get a nontrivial solution
quite easily. If a = 1, c = −1, the problem becomes solving X2 + bY 2 − Z2 = 0 which has the
nontrivial solution (1, 0, 1). If on the other hand a = 1, b = −1, the problem becomes solving
X2−Y 2 + cZ2 = 0 which has the nontrivial solution (1, 1, 0). In the case b = c = −1, the problem
becomes solving aX2 − Y 2 − Z2 = 0, which unfortunately has no obvious nontrivial solution.
However, the assumption b = c = −1 implies that −1 is a quadratic residue modulo a (because
−bc = −1 and our hypothesis is that −bc is a quadratic residue modulo a). So since a > 0, we can
thus invoke Lemma 3.6 to deduce the existence of integers y′, z′ satisfying y′2 + z′2 = a. It then
follows that (1, y′, z′) is a nontrivial solution as a− (y′2 + z′2) = a− a = 0.

We now assume that a, b, c are not of the special cases above so that all the constraints cannot
attain equality. Since we assumed that b, c < 0, it follows that −abc < by2, cz2 6 0. Since we also
assumed a > 0, we thus have the bound

−2abc < ax2 + by2 + cz2 6 ax2 < abc,

or in other words,
−2abc < q(x, y, z) < abc.

But from (3.9), we know that q(x, y, z) is an integer divisible by abc. So we are forced to conclude
that either q(x, y, z) = 0 or q(x, y, z) = −abc. If q(x, y, z) = 0, we are done. So assume that
q(x, y, z) = −abc. In this case, we can construct a solution (x̃, ỹ, z̃) defined in the following way:

x̃ = −by + xz, ỹ = ax+ yz, z̃ = z2 + ab.

To verify that (x̃, ỹ, z̃) is indeed a solution, we compute

q(x̃, ỹ, z̃) = ax̃2 + bỹ2 + cz̃2

= a(−by + xz)2 + b(ax+ yz)2 + c(z2 + ab)2

= ab2y2 + ax2z2 −����2abxyz + a2bx2 + by2z2 +����2abxyz + cz4 + a2b2c+ 2abcz2

= ab(ax2 + by2 + cz2︸ ︷︷ ︸
=−abc

) + z2(ax2 + by2 + cz2︸ ︷︷ ︸
=−abc

) + abcz2 + a2b2c

= −a2b2c+−abcz2 + abcz2 + a2b2c

= 0.

What happens if (x̃, ỹ, z̃) is trivial? Then necessarily, we have z̃ = 0 and so z2 = −ab. As
established previously, the product ab is squarefree and so this implies that z = ±1, which in turn
implies that −ab = 1. This is equivalent to a = 1, b = −1 which is one of the special cases that we
have already settled. �

With Legendre’s theorem, we have a satisfying answer to Question 3.3 thanks to Lemma 3.3
and Theorem 3.2 combined. Given a conic C with associated quadratic form q(X,Y, Z), the link
between these results is captured in the following diagram:

q(X,Y, Z) = 0
Legendre (existence)−−−−−−−−−−−−−→ { nontrivial solutions } Lem. 3.3←−−−−→ Prim(q)

Thm. 3.2←−−−−−→ C(Q).

In particular, we see that there is a direct connection

q(X,Y, Z) = 0
Legendre (existence)−−−−−−−−−−−−−→ C(Q).
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Thus, in a sense, Legendre’s theorem gives us an algorithm of checking rational points on a conic:

(1). A conic C : f(x, y) = 0 is given.

(2). We look at its associated quadratic form q(X,Y, Z) = Z2f(X/Z, Y/Z).

(3). Diagonalize q to get q(U, V,W ) = aU2 + bV 2 + cW 2 for some a, b, c ∈ Z that are nonzero,
pairwise coprime, squarefree and not all having the same sign.

(4). Compute α = −bc, β = −ac and γ = −ab.

(5). If α, β and γ are all quadratic residues modulo a, b and c respectively, then return: there
exists a rational point C.

(6). Otherwise, return: there does not exist any rational point on C.

Let us now look at a concrete original example.

Example. We revisit the conic (3.1) that we mentioned at the start of this section. We claim that
there exists a rational point on the conic

C : 66564x2 + 8084y2 − 1548x− 91 = 0.

Proof. By Theorem 3.2 and Lemma 3.3, it is enough to prove that the associated quadratic form

q(X,Y, Z) = 66564X2 + 8084Y 2 − 91Z2 − 1548XZ,

has a nontrivial solution in Z3. We shall first diagonalize q. To do this, we need to complete the
square in X with a suitable Z coefficient so that the XZ term vanishes. By inspection, we see that
this is achieved if we write

q(X,Y, Z) = 36

(
43X − Z

2

)2

+ 8084Y 2 − 100Z2.

Then, we consider the change of variables R = 43X − Z/2, S = Y , T = Z to get the quadratic
form

q′(R,S, T ) = 36R2 + 8084S2 − 100T 2.

Now, we divide by gcd(36, 8084, 100) = 4 to get

q′(R,S, T )

4
= 9R2 + 2021S2 − 25T 2.

Finally, we apply the change of variables U = 3R, V = S, W = 5T which make the coefficients
squarefree (note that 2021 = 43 × 47 and so is already squarefree) to get the integral quadratic
form

q′′(U, V,W ) = U2 + 2021V 2 −W 2.

We are now in the setting of Legendre’s theorem with a = 1, b = 2021 and c = −1. Since any
integer modulo 1 is a quadratic residue, and that 1 is a quadratic residue modulo any integer, it
follows by Legendre’s theorem that q′′ = 0 has a nontrivial solution.

Using the computer algebra system SageMath [28], we verify that indeed C has a rational point
via the following code:

> P.<X, Y, Z> = ProjectiveSpace(QQ, 2)

> C = Conic(66564*X^2 + 8084*Y^2 - 91*Z^2 - 1548*X*Z)

> C.has_rational_point(point=True)

(True, (13/258 : 0 : 1))
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The code returned P = (13/258, 0) to be a rational point on C, and so we can parametrize all
other rational points on C using P .

It turns out that Legendre’s theorem is a special case of the celebrated Hasse-Minkowski
theorem. It is a shame if we do not discuss this a little as this is a good chance to introduce
the theory of p-adic analysis, a very powerful tool in arithmetic geometry and number theory in
general.

3.3 Non-triviality condition 2: Hasse-Minkowski theorem

We begin with a discussion on absolute values on Q, finishing with a theorem of Ostrowski which
classify all possible nontrivial absolute values on the rational numbers. Then we move on to
constructing the p-adic numbers and finally, discuss the Hasse-Minkowski theorem.

3.3.1 Absolute values

There are many ways to formulate the Hasse-Minkowski theorem albeit they all eventually lead to
the same idea. Our preferred way is the formulation using p-adic fields Qp. For this, we first need
to construct the p-adic numbers and deduce basic facts about it.

Definition 3.4. An absolute value on a field K is a map |·| : K → [0,∞) satisfying the following
conditions:

(1). (Positive). |x| = 0 if and only if x = 0,

(2). (Multiplicative). |xy| = |x||y| for all x, y ∈ K,

(3). (Triangle inequality). |x+ y| 6 |x|+ |y| for all x, y ∈ K.

Recall that in the field of real numbers R, we have the usual absolute value, denoted | · |∞,
which gives a notion of size and distance. This passes to an absolute value on the field of rational
numbers Q. Of course, this is not the only absolute value on Q as, for example, we have the trivial
absolute value given by |x| = 1 for any x 6= 0 and |0| = 0. Absolute values different from the trivial
absolute value is said to be nontrivial, with | · |∞ being an immediate example. Our next goal is to
define a new family of nontrivial absolute values on Q using something called a p-adic valuation.

Definition 3.5. Let p be a prime number. For any nonzero a ∈ Z, we define the p-adic valuation
of a, denoted νp(a), to be the greatest positive integer k such that pk | a. Furthermore, we can
extend the definition to any a/b ∈ Q× by defining νp(a/b) = νp(a)− νp(b).

In simpler words, the p-adic valuation of any nonzero a ∈ Z is the power k appearing in the
factorization a = bpk, for some b ∈ Z such that gcd(b, p) = 1. For a = 0, we shall define νp(0) =∞.
Gouvêa [8] reasons this in the following way: a natural way to compute, say, ν2(80) is to keep
dividing by 2 to get a sequence

80→ 40→ 20→ 10→ 5,

where we stopped at 5 because it is not divisible by 2 anymore. The number of steps is then ν2(80)

which in this case is 4. If we apply the same logic to νp(0), we would have to keep dividing 0 by p
infinitely many times

0→ 0→ 0→ 0→ · · · ,

which justifies our definition. For the case of a/b ∈ Q×, there is an even simpler way to formulate
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its p-adic valuation: νp(a/b) is the power k appearing in the factorization

a

b
=
(m
n

)
pk,

such that gcd(m, p) = gcd(n, p) = 1. This can be seen by unpacking definitions.

Example. Some immediate examples.

(i). ν13(21) = 0. It is trivial that for any nonzero a ∈ Z, νp(a) = 0 if p - a.

(ii). ν7(1715) = 3. This is because 1715 = 343 · 5 = 73 · 5.

(iii). ν5(2020) = 1. This is because 2020 = 22 · 5 · 101 and observe that gcd(5, 22 · 101) = 1.

(iv). ν43
(

2020

2021

)
= −1. To see this, we use our latest formulation to have

2020

2021
=

(
2020

47

)(
1

43

)
=

(
2020

47

)
43−1.

We can see that the p-adic valuation on Z have a shared property with the logarithm function:
νp(mn) = νp(m) + νp(n). Morover, we have that

νp(m+ n) > min {νp(m), νp(n)} , (3.10)

for any m,n ∈ Z. To see both of this facts, just consider the factorization of m and n, and look at
the highest power of p. The first one should be immediate. However, one might falsely conclude that
we have an equality instead in (3.10). Here’s an immediate counterexample to this false conclusion:
ν5(2020) = 1 and ν5(5) = 1 but ν5(2020 + 5) = ν5(2025) = 2 > 1 = min {ν5(2020), ν5(5)}.

Lemma 3.7. Let p be a prime number. Then for any x, y ∈ Q×, we have

(1). νp(xy) = νp(x) + νp(y),

(2). νp(x+ y) > min {νp(x), νp(y)}.

Proof. Let x, y ∈ Q. From our previous discussion, we know that we can write

x =
(a
b

)
pm, y =

( c
d

)
pn,

for some a, b, c, d ∈ Z and for some positive integers m,n such that a, b, c, d are all coprime to p.
We then have νp(x) = m and νp(y) = n. Now consider their product,

xy =
(ac
bd

)
pm+n.

By coprimality of a, b, c, d and p, we have that gcd(ac, p) = gcd(bd, p) = 1. So it follows that
νp(xy) = m + n = νp(x) + νp(y). Now, assume without loss of generality that m 6 n. If we
consider their sum, we can take out all the common p powers:

x+ y = pm
(a
b
pn−m +

c

d

)
= pm

(
adpn−m + bc

bd

)
.

Since gcd(bd, p) = 1, it follows that νp(x+ y) > m = min {m,n} = min {νp(x), νp(y)}. �

Using the notion of p-adic valuation, we can define an absolute value on Q.
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Definition 3.6. The map | · |p : Q→ [0,∞) defined by

|x|p =

p−νp(x), if x 6= 0,

0, if x = 0.

is called the p-adic absolute value on Q.

We will prove that this is actually an absolute value in Proposition 3.1 below. In fact, we will
prove a stronger condition.

Definition 3.7. Let K be a field. We say that an absolute value | · | : K → [0,∞) is non-
Archimedean if |x+y| 6 max {|x|, |y|} for all x, y ∈ K. Otherwise, we say that it isArchimedean.

Observe that the non-Archimedean property is stronger than the triangle inequality. It gives
a sharper bound as max {|x|, |y|} 6 |x|+ |y| is true for all x, y ∈ K. Our usual absolute value | · |∞
on R is Archimedean. It turns out, our absolute value of interest | · |p is a non-Archimedean one.

Proposition 3.1. The p-adic absolute value | · |p is a non-Archimedean absolute value on Q.

Proof. Fix p a prime number. We have to check three things.

(Positive). Clearly, if x = 0, then |x|p = 0 by definition. The converse is true as well as p−νp(x) 6= 0

for any x 6= 0. So |x|p = 0 must imply x = 0.

(Multiplicative). Let x, y ∈ Q. Then

|xy|p = p−νp(xy) = p−νp(x)−νp(y) = p−νp(x)p−νp(y) = |x|p |y|p,

where we have used (1) of Lemma 3.7 in the second equality.

(Triangle inequality). We will prove that | · |p is non-Archimedean as this implies the triangle
inequality. Let x, y ∈ Q. If either x or y is zero, or even if their sum is zero, then we are done. So
suppose not. Now, νp(x+ y) > min {νp(x), νp(y)} by (2) of Lemma 3.7. Consequently,

|x+ y|p = p−νp(x+y) 6 max
{
p−νp(x), p−νp(y)

}
= max {|x|p, |y|p} 6 |x|p + |y|p.

The first inequality gives non-Archimedean whereas the second inequality gives the triangle in-
equality. �

Before we move on to more theory, we prove some basic facts about absolute values that will
be useful for us later on. It is easy to confuse the multiplicative identity in a general field K and
the one in R when we put them side by side. To emphasize distinction, we shall write 1K ∈ K and
1R ∈ R for their respective multiplicative identities when needed.

Lemma 3.8. Let | · | be an absolute value on a field K. Then |1K | = 1R and |x| = 1R for any
x ∈ K such that xn = 1K for some n ∈ Z+.

A useful reminder before we prove this lemma is to note that the image of the absolute value
is a subset of [0,∞) ⊆ R. That is, we are only dealing with real numbers in the image, so we can
apply known results from calculus.

Proof. To prove the first claim, we first observe that 1K = 12K . By the multiplicative property of
absolute values, we thus have |1K | = |1K |2. Due to the positive property, the only way this is true
is if |1K | = 1R. We can use the same argument to prove the second claim. We have

|x|n = |xn| = |1K | = 1R,
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where the last equality is due to the first part of the lemma. There are two cases to consider
when solving the equation zn = 1R for real solutions. If n is odd, the equation has 1R as its only
solution. On the other hand, if n is even, we have ±1R as solutions. Now replace z with |x| to
deduce that we must have 1R as a solution in both cases since absolute values must be positive by
definition. �

Recall what a metric on a set is. It is a map d : X ×X → [0,∞) where X is any non-empty
set, such that for all x, y ∈ X we have d(x, y) = 0 if and only if x = y; d(x, y) = d(y, x); and
d(x, y) 6 d(x, z) + d(z, y) for all z ∈ X. The pair (X, d) is then called a metric space. We know
that any norm ‖ · ‖ defined on a field induces a metric by taking d(x, y) = ‖x − y‖. How about
absolute values? The answer is positive as well by using the same construction.

Lemma 3.9. Let | · | be an absolute value on a field K. The metric d(x, y) = |x − y| is a metric
on K. We call d the metric induced by | · |.

Proof. The first metric axiom is straightforward from the absolute value axioms: d(x, y) = 0 if and
only if |x − y| = 0 which is true if and only if x = y. The second metric axiom is also immediate
due to K being a field: d(x, y) = |x − y| = |y − x| = d(y, x). The only thing left to prove is the
triangle inequality which is also straightforward:

d(x, y) = |x− y| = |(x− z) + (z − y)| 6 |x− z|+ |z − y| = d(x, z) + d(z, y).

Since the x, y, z appearing above are all arbitrary, we are done. �

Definition 3.8. Let X be a non-empty set. We say that a metric d : X × X → [0,∞) is non-
Archimedean if d(x, y) 6 max {d(x, z), d(z, y)} for any x, y, z ∈ K. Otherwise, we say that it is
Archimedean.

We have two things named non-Archimedean, so they better be related.

Lemma 3.10. Let | · | be an absolute value on a field K, and let d be the metric induced by | · |.
Then | · | is a non-Archimedean absolute value if and only if d is a non-Archimedean metric.

Proof. Suppose | · | is a non-Archimedean absolute value. Then

d(x, y) = |x− y| 6 |(x− z) + (z − y)| 6 max {|x− z|, |z − y|} = max {d(x, z), d(z, y)} ,

which implies that d is a non-Archimedean metric. Conversely, suppose d is a non-Archimedean
metric. Then

|x+ y| = |x− (−y)| = d(x,−y) 6 max {d(x, 0), d(0,−y)} = max {|x|, |−y|} .

Since (−1)2 = 1, it follows that | − 1| = 1 by Lemma 3.8. This implies that |−y| = |−1||y| = |y|,
so we are done. �

So for us, the p-adic absolute value on Q induces a non-Archimedean metric d(x, y) = |x−y|p.
This allows us to talk about Cauchy sequences in Q with respect to this metric. We recall what it
means for a sequence to be Cauchy.

Definition 3.9. A sequence {xn} in a metric space (X, d) is said to be Cauchy if for every ε > 0,
there is a positive integer N such that d(xm, xn) < ε whenever m,n > N .
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So if K is a field equipped with an absolute value | · |, it makes sense to talk about Cauchy
sequences in K by considering the metric d induced by | · |. More explicitly, we say that a sequence
{xn} in K is Cauchy with respect to | · | if it is Cauchy in the metric space (K, d).

Lemma 3.11. Let | · | be a non-Archimedean absolute value on a field K. Any sequence {xn} in
K is Cauchy with respect to | · | if and only if |xn+1 − xn| → 0.

Proof. The (⇒) direction should be obvious. For the converse (⇐), suppose that |xn+1−xn| → 0.
Then for every ε > 0, there is a positive integer N such that |xn+1 − xn| < ε for all n > N .
Consider the index m = n+ k > n. Then observe that

|xm − xn| = |xn+k − xn| = |xn+k − xn+k−1 + xn+k−1︸ ︷︷ ︸
=0

−xn+k−2 + xn+k−2︸ ︷︷ ︸
=0

− · · ·+ xn−1︸ ︷︷ ︸
=0

−xn|.

By the non-Archimedean hypothesis on |·|, we can apply the non-Archimedean property repeatedly
so that the right hand side is 6 max {|xn+k − xn+k−1|, |xn+k−1 − xn+k−2|, . . . , |xn+1 − xn|}. Since
we assumed n+ k > n and we have convergence to zero for n > N , it follows that this bound goes
to 0 as well. But m,n was arbitrary, so the claim follows. �

This claim is not true for Archimedean absolute values. For example, consider the well-known
harmonic series from real analysis

xn =

n∑
k=1

1

k
.

We have |xn+1 − xn| = 1/(n + 1) → 0 where | · | is the usual absolute value in R. But it is a
standard real analysis fact that the harmonic series diverges, and so cannot be Cauchy.

Let (X, d) be metric space. Just as a norm induces a metric, the metric d itself induces a
topology on X. Such a topology is the one generated by the collection of all open balls defined by
d. Write

B(x, ε) = {y ∈ X | d(x, y) < ε} ,

to mean the d-open ball with center x and radius ε. We then say any subset U ⊆ X is d-open if
for any x ∈ U , there exists εx > 0 such that B(x, εx) ⊆ U .

Definition 3.10. Let d1, d2 be two metrics on a set X, and let x ∈ X. We say d1 and d2 are
equivalent if they induce the same topology on X. In other words, a subset U ⊆ X is d1-open if
and only if it is d2-open. If X is a field, then we say that two absolute values on X are equivalent
if they induce equivalent metrics.

The punchline of our discussion about Cauchy sequences, equivalent metrics and absolute
values is the theorem of Ostrowski, which says that the usual absolute value together with the
p-adic absolute value defines all the possible nontrivial absolute values on Q.

Theorem 3.6 (Ostrowski). Every nontrivial absolute value | · | on Q is equivalent to either the
usual Archimedean absolute value | · |∞ or | · |p for some prime number p.

Proof. See Chapter 1, Theorem 1 of Koblitz [10] or Chapter 3, Theorem 3.1.4 of Gouvêa [8]. �
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3.3.2 p-adic field, Hasse’s principle, and the main theorem

Suppose | · |p is a non-Archimedean absolute value on Q. By Ostrowski’s theorem, we know that
this is one of the p-adic absolute values (which explains why we wrote | · |p). Now consider the set

Cp = {{xn} ⊆ Q : {xn} is Cauchy with respect to | · |p} .

It turns out that we can give Cp a commutative ring structure by defining addition + and multi-
plication × in the following way: for any {xn} , {yn} ∈ Cp, define

{xn}+ {yn} = {xn + yn} , {xn} × {yn} = {xnyn} . (3.11)

Furthermore, the additive and multiplicative identities are given by the sequences

0Cp = {0, 0, . . .} , 1Cp = {1, 1, . . .} .

Remark 5. We will drop the multiplication symbol × and instead write {xn} {yn} = {xnyn}; this
is standard practice in abstract algebra.

We shall omit the proof of (3.11) as it is identical to the case of Cauchy sequences in R with
respect to the usual Archimedean absolute value. The point now is that we have the following.

Proposition 3.2. Let | · |p be any non-Archimedean absolute value on Q. Then Cp is a unital
commutative ring.

Remark 6. Note that Cp is not a field as it is not even an integral domain. For example, the
sequence {1, 0, 0, . . .} and {0, 0, π, . . .} are zero divisors as

{1, 0, 0, . . .} {0, 0, π, . . .} = {0, 0, 0, . . .} = 0Cp .

We now claim that Q lives inside this monstrous ring Cp.

Lemma 3.12. There is an injective ring homomorphism Q ↪→ Cp.

To see this, we first observe that for any x ∈ Q, the constant sequence x̄ := {x, x, x, . . .} is an
element of Cp. This is true as constant sequences are trivially Cauchy. We can then construct an
injective homomorphism by taking each element of Q to its constant sequence representation.

Proof. The map Q→ Cp defined by x 7→ x̄ gives the desired injective ring homomorphism. �

Now consider the set mp = {{xn} ∈ Cp | xn → 0}, which is a subset of Cp. This set consists
of Cauchy sequences which converges to 0 with respect to the non-Archimedean absolute value
inherited from Cp. We claim that this set is an ideal in Cp.

Lemma 3.13. mp is an ideal in Cp.

While this seems like an algebraic claim, the proof is really a routine of real analysis. We shall
use the standard fact that Cauchy sequences in any metric space is bounded.

Proof. It should be clear that mp is an additive subgroup of Cp. Let {xn} ∈ Cp and let {zn} ∈ mp.
We want to show that xnzn → 0 with respect to | · |p. Since {xn} is Cauchy, then it is bounded,
say, by M > 0. Since zn → 0, there exists a positive integer Nε such that for any n > Nε, we have
|zn|p = |zn − 0|p < ε/M for any ε > 0. It then follows that for sufficiently large n,

|znxn − 0|p = |xnzn|p 6M |z|p < M
( ε

M

)
= ε

29



for any ε > 0. So {xnzn} ∈ mp, and mp is an ideal in Cp as desired. �

Recall what it means for an ideal in a ring to be maximal. If R is a ring and m ⊆ R is an
ideal, we say that m is maximal in R if for any ideal J ⊆ R such that m ⊆ J , we either have J = m

or J = R. We now make the following claim about mp.

Lemma 3.14. mp is a maximal ideal in Cp.

Proof. We will follow closely a proof given by Gouvêa [8]. Let {xn} ∈ Cp be a Cauchy sequence
such that {xn} /∈ mp. Consider the ideal I generated by two elements {xn} and mp. We will show
that 1̄ ∈ I as this would imply I = Cp.

By definition of {xn} /∈ mp, there exists a real number c > 0 and a positive integer N such
that for any n > N , we have |xn|p > c > 0. So, xn 6= 0 for n > N . Now consider the sequence
{yn} defined by

yn =

1/xn, if n > N,

0, if n < N.

We claim that {yn} ∈ Cp i.e. {yn} is Cauchy with respect to | · |p. To prove this, we first observe
that

|yn+1 − yn|p =

∣∣∣∣ 1

xn+1
− 1

xn

∣∣∣∣
p

=
|xn+1 − xn|p
|xn+1xn|p

6
|xn+1 − xn|p

c2
−→ 0.

Since | · |p is non-Archimedean, Lemma 3.11 implies that {yn} is Cauchy. Now put {zn} =

{xn} {yn}. Since {xn} and {yn} are both Cauchy, it follows that {zn} ∈ Cp. But what is {zn}? It
is the sequence

zn =

1, if n > N

0, if n < N
= {0, 0, . . . , 0, 1, 1, . . .} .

If we further consider the sequence 1̄− {zn}, we see that

1̄− {zn} = {1, 1, . . .} − {0, 0, . . . , 0, 1, 1, . . .} = {1, 1, . . . , 1, 0, 0, . . .} −→ 0,

That is, we have 1̄− {zn} ∈ mp. But this is equivalent to saying that

1̄ = {zn}+ {wn} = {xn} {yn}+ {wn} ,

for some {wn} ∈ mp. That is, 1̄ is a Cp-linear combination of {xn} and mp, and so belongs to I. �

The motivation for us in proving the preceding lemma is the following: let R be a ring and
let m ⊆ R be an ideal. Then the correspondence theorem of ideals (for those unfamiliar with this
result, see Chapter 10, Section 4 of Artin [2]) gives us that m is a maximal ideal if and only if R/m
is a field. So with the knowledge that mp is maximal in Cp, we can construct a new field which is
of most interest to us.

Definition 3.11. The quotient ring Qp = Cp/mp is called the field of p-adic numbers.

Recall the fact that Q is embedded in the ring Cp by taking x 7→ x̄; this was the statement of
Lemma 3.12. In fact, the same ring homomorphism passes to an inclusion Q ↪→ Qp. The crucial
fact is that, for any two distinct constant sequences x̄, ȳ ∈ Cp, we have that

x̄− ȳ = {x, x, . . .} − {y, y, . . .} = {x− y, x− y, . . .} 6−→ 0.
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This implies that they belong to different equivalence classes modulo mp. So we can take any x ∈ Q
to the equivalence class (x̄+ mp) ∈ Qp in a one-to-one fashion.

Now consider the Diophantine equation f = 0 where f ∈ Q[x1, . . . , xn] is some polynomial.
Our discussion above tells us that it should be expected that a solution in Q to f = 0 gives
a solution in R and in Qp for all prime number p. What about the converse? This yields the
following question.

Question 3.4. Does the existence of solutions in R and Qp, for all prime number p, to the
Diophantine equation f = 0 implies the existence of a solution in Q?

Hasse’s local-global principle suggests that in this case, it may be good to study solutions in R and
Qp to deduce the existence of solutions in Q. Of course, this is merely a principle and in fact, it
does not always work as we shall see. But the general idea is the important part: look at things
locally, and then combine them to see if they give anything globally. This strategy works really
well for puzzles although its usage in number theory might feel a bit unusual or counterintuitive at
first. In our case, finding solutions in Q is the global problem, whereas finding solutions in R and
Qp is the local problem. To our delight, the Hasse principle works extremely well for quadratic
forms.

Theorem 3.7 (Hasse-Minkowski theorem). Let q(X) be a quadratic form. Then the equation
q(X) = 0 has a nontrivial solution in Qn if and only if it has a nontrivial solution in Rn and Qnp
for all prime numbers p.

We will not prove this theorem as this would simply digress too much from our goal, but the
motivated reader can find a proof in either Serre [22] or Gerstein [7].

Clearly, we can restrict our attention to integral quadratic forms and the Hasse-Minkowski
theorem still holds. The useful thing for us (in the ternary case) is the necessary condition of the
theorem. Why? We know by Lemma 3.2 that q(X) = 0 having a nontrivial solution in Qn implies
the existence of a nontrivial solution in Zn; which by Lemma 3.3, further implies the existence of
a primitive solution. By applying Theorem 3.2, we thus get our desired rational points. This tells
us that it suffices to look at local solutions of q(X) = 0 to deduce the existence of rational points
on the conic C whose associated quadratic form is q. Note that the Hasse-Minkowski theorem is
much more powerful as it is true for quadratic forms in any number of indeterminates. Legendre’s
Theorem 3.5 is simply the special case for when the quadratic form is ternary.

Since the Hasse principle works so well for quadratics, it is a natural question to ask if it works
for cubics, quartics or even higher degree polynomials. Unfortunately, the answer is negative.

Example. Counterexamples to the Hasse principle.

(i). It can be shown (for example, using Hensel’s lemma) that the equation

(X2 − 2)(X2 − 17)(X2 − 34) = 0

has a solution in R and Qp for every prime number p, but has no roots in Q.

(ii). Selmer proved in [21] that the equation 3X3 + 4Y 3 + 5Z3 = 0 has a nonzero solution in R
and Qp for every prime number p, but that its only solution in Q is the trivial one.

(iii). Aitken and Lemmermeyer gave a whole class of counterexamples to the Hasse principle in
[1] building on the work of Lind and Reichardt. For example, they proved that the equation
U2 − 17W 2 − 19Z2 = 0, where UW = V 2, does not satisfy the Hasse principle.
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4 Rational Points on Cubics

We now turn our attention to finding rational points on the curve C associated to the cubic
polynomial

γ(x, y) = ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j,

which is defined over Q. The curve is called a cubic because it is defined by a cubic polynomial.
Looking back at how we did it for the conics, some questions that should be natural to ask are the
following.

Question 4.1. A first attack on the cubic curve problem:

(i). Given one rational point on the cubic, can we find other rational points?

(ii). If the answer to (i) is positive, can we use the same method as we did for conics?

(iii). If the answer to (i) is negative, then what methods can we use?

As we shall see, the first question has a positive answer for special cubics called singular
cubics. However, the way we find other rational points for singular cubics uses a simpler argument
compared to what we did for the conics. In fact, it is not even a geometric argument and we do
not know whether the same method for conics work for singular cubics. What we do know is that
the method we used for conics breaks for general cubics due to a special case of Bézout’s theorem
(see Theorem 4.1). This gives a negative answer to our second question. The third question is
something that we will explore further on throughout the chapter. In particular, it will be discussed
in Section 4.3 and beyond.

4.1 Tools that will be helpful

This section gives the vocabulary needed to talk about plane curves in a more general setting. A
particular important topic that we shall discuss is that of projective geometry which gives us a
completely new way of viewing plane curves.

4.1.1 Curves and lines

Definition 4.1. Let K be a field. A nonzero polynomial f ∈ K[x, y] is said to be irreducible if
f = gh for some g, h ∈ K[x, y] implies that either g or h is a constant polynomial.

Definition 4.2. LetK be a field and let f ∈ K[x, y]. The degree of the plane curve C : f(x, y) = 0

is the degree of the polynomial f . Morever, we say that C is irreducible if f is an irreducible
polynomial.

So degree 1 curves are lines, degree 2 curves are conics, and degree 3 curves are cubics. Before
we even start to talk about cubics, we prove a special case of the well-known Bézout’s theorem.
For this, we first need a lemma.

Lemma 4.1. Let K be a field and let f ∈ K[x] be a nonzero polynomial with deg f = d. Then f
has at most d roots in K, counting multiplicities.

Proof. We will prove by induction on d ∈ Z+.

(Base case). If d = 0, then there is nothing to prove as f is nonzero and is constant, so it has no
roots in K.

(Inductive hypothesis). Suppose the result holds for all f ∈ K[x] with deg f < d.
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(Inductive step). Let f ∈ K[x] be a polynomial of degree d. If f has no roots, then we are done.
So suppose there exists α ∈ K such that f(α) = 0. Then there is a factorization

f(x) = (x− α)g(x),

for some g(x) ∈ K[x]. But since K is a field, and so is an integral domain, we have

d = deg f = deg(x− α) + deg g = 1 + deg g.

This implies that deg g = d − 1 and so by the inductive hypothesis, g has at most d − 1 roots.
Obviously, these d− 1 roots are roots of f as well. Moreover, if β ∈ K is another root of f distinct
from α, then it must be one of the d − 1 roots of g. So together with α earlier, f has at most d
roots. This completes the inductive step. �

Theorem 4.1 (Bézout’s theorem, easy case). Let K be a field and let d be a positive integer. Let
C be a degree d curve and let L be a line, both defined over K2. If L 6⊆ C, then #(C ∩ L) 6 d.

This theorem says that there is at most d intersection points between a degree d curve and
a line. For example, when d = 2, this theorem says that a line meets a conic at 0, 1 or 2 points.
For a concrete example, consider the unit circle C : x2 + y2 = 1. Then observe that the line x = 2

meets C at 0 points, the line x = 1 meets C at 1 point and the line x = 0 meets C at 2 points.
The proof of this theorem uses a similar argument to the one we used to prove Theorem 3.1.

Proof. Let C be the curve associated to f . Since C has degree d, so does f by definition. We now
have two cases to take care of.

(Non-vertical line case). Suppose g defines the line L such that it is not a vertical line. Then
deg g = 1 and we can write

g(x, y) = ay −mx− b, (∗)

for some a, b,m ∈ K with a 6= 0K . Without loss of generality, we may assume that a = 1K (for
otherwise, just divide by a when we solve g(x, y) = 0). Now suppose (x, y) ∈ K2 satisfies the
system of equations f(x, y) = 0,

y = mx+ b.

Then x satisfies pm(x) = f(x,mx + b) = 0 which is a polynomial in x, defined over K, of degree
at most d. By Lemma 4.1, we know that pm has at most d roots (counting multiplicities) for
otherwise it is identically zero and so L ⊆ C. Consequently, there is at most d such x that satisfies
pm(x) = 0. This implies that there is at most d such (x, y) that satisfies the system of polynomial
equations.

(Vertical line case). If L is a vertical line, then g is still given by (∗) but now with a = 0K . Without
loss of generality, we may also assume that m = 1K now. Suppose (x, y) ∈ K2 satisfies the system
of equations f(x, y) = 0,

x+ b = 0.

Then y satisfies f(−b, y) = 0 which is a polynomial in y of degree at most d. By the same argument
using Lemma 4.1, we see that there are most d such (x, y) for otherwise we have L ⊆ C and get a
contradiction. �
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Now consider the theorem with K = Q. The main point of the theorem for us is that it tells
us that the idea we used to find infinitely many rational points on the conic from a single rational
point via projecting onto a line cannot be extended to the cubics. Why? Again, think about our
prototypical example, the unit circle. We found one rational point P = (−1, 0) and fixed it. Then,
we project lines through this point. Accordingly, only one point is identified with one line. In
cubics, there is a possibility that two points are identified with one line; so, we lose information.
For this reason, we need to be more clever when dealing with cubics.

4.1.2 Projective geometry

For this subsection, we fix K to be a field and let K̄ be its algebraic closure. As a reminder, we
write R× to mean the group of units in R where R is any ring.

Recall that we dealt with conics by talking about their associated quadratic forms. This
strategy of homogenizing the quadratic polynomial defining the conic is nice, so we want to try to
extend it to cubics. To do this, we need to establish some new ideas first.

Definition 4.3. The affine n-space over K is the set

An = An(K̄) =
{

(x1, . . . , xn) | xi ∈ K̄
}
.

An element P = (x, y) ∈ An is called a point, and the x, y are called the coordinates of P . The
following similar set

An(K) = {(x1, . . . , xn) | xi ∈ K}

is called the set of K-rational points in An. We will be particularly interested in the affine
2-space also known as the affine plane.

Now consider the set An+1 \ {0} and define a relation ∼ on it by

(x0, . . . , xn) ∼ (y0, . . . , yn) ⇐⇒ xi = λyi for some λ ∈ K̄×.

We claim that this relation is an equivalence relation.

Lemma 4.2. ∼ on An+1 \ {0} as defined above is an equivalence relation.

Proof. Let S = An+1 \ {0} for simplicity and assume that every (n + 1)-tuple written below are
elements of S. We have to prove three things.

(Reflexive). If (x0, . . . , xn) ∈ S, then clearly, we have xi = 1xi where 1 is the unital identity in K̄.
So (x0, . . . , xn) ∼ (x0, . . . , xn).

(Symmetric). Suppose (x0, . . . , xn) ∼ (y0, . . . , yn). Then there exists λ ∈ K̄× such that xi = λyi.
Since λ is a unit in K̄, there exists µ ∈ K̄× such that µλ = 1. This implies that µxi = yi. That
is, (y0, . . . , yn) ∼ (x0, . . . , xn).

(Transitive). Suppose (x0, . . . , xn) ∼ (y0, . . . , yn) and (y0, . . . , yn) ∼ (z0, . . . , zn). Then there exists
λ, µ ∈ K̄× such that xi = λyi and yi = µzi for all i. Then simply observe that

xi = λ(µzi) = (λµ)zi,

and so (x0, . . . , xn) ∼ (z0, . . . , zn) since the product λµ is itself a unit in K̄. �

Now write [x0, . . . , xn] for the equivalence class that contains (x0, . . . , xn). Then we can define
the set of equivalence classes under ∼. This set is the so-called projective n-space.
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Definition 4.4. The projective n-space over K is the set

Pn = Pn(K̄) =
{

[x0, . . . , xn] : xi ∈ K̄ not all zero
}
.

The xi are called the homogeneous coordinates of the point [x0, . . . , xn]. The following similar
set

Pn(K) = {[x0, . . . , xn] : xi ∈ K not all zero}

is called the set of K-rational points in Pn.

We will be primarily interested in the projective 1- and 2-space called the projective line and
projective plane respectively.

To visualize the projective plane geometrically, it is easier to set K = R and focus on the
R-rational points in P2. In this setting, P2 consists of all the lines through the origin in R3. Now,
observe that if [x, y, z] ∈ P2 and z 6= 0, we have an equivalence (x, y, z) ∼ (xz ,

y
z , 1). This implies

that there is a decomposition of P2 into two parts:

P2 = {[x, y, 1] : x, y ∈ R} ∪ {[a, b, 0] : a, b ∈ R} . (4.1)

This decomposition gives us a nice picture of P2. First, observe that there is a bijection A2(R)→
{[x, y, 1] : x, y ∈ R} simply by taking (x, y) to [x, y, 1]. This implies that P2 contains a copy of the
affine plane A2 together with some extra points, so we have at most an inclusion A2 ↪→ P2. These
extra points are what we call points at infinity and they form a projective line P1. But note that
the decomposition (4.1) is not unique. We could have equally decompose P2 in a way such that
the first set in the union is not {[x, y, 1]} but instead {[x, 1, z]} or {[1, y, z]}, or even replace the
1 with, say, eπ, all of which are still in bijection with A2. Such a subset of P2 is called an affine
chart.

Recall how we defined plane curves in K2 in Chapter 2. They are independent of how the
plane sits in space, so we really defined them on K2 viewed as an affine space. Due to this, we
shall call them affine curves from now on. The reasoning behind this emphasis is because we want
to extend the notion of affine curves to the projective plane.

Definition 4.5. Let F ∈ K[X,Y, Z] be a homogeneous polynomial. We call the set of solutions

CF =
{

[x, y, z] ∈ P2(K̄) : F (x, y, z) = 0
}
,

the projective plane curve (associated to F ). We say that CF is defined over K since F is
defined over K. An element of CF is called a projective point. When the context is clear, we
will simply call CF a projective curve or simply a curve, and write C. Similarly, we may instead
just say a point instead of a projective point.

Just like plane curves in the affine plane, we will occasionally write C : F (X,Y, Z) = 0 to
mean the projective curve C associated to F . And just like affine curves, we have a notion of
degree and irreducibility.

Definition 4.6. Let C be a projective plane curve associated to F . The degree of C is the degree
of F ; and we say that C is irreducible if F is an irreducible polynomial.

As before with affine curves, a degree 1 projective curve is called a projective line, a degree 2

projective curve is called a projective conic, and a degree 3 projective curve is called a projective
cubic.

When dealing with conics, we homogenize a quadratic polynomial f(x, y) to get its associated
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quadratic form q via the transformation q = Z2f(X/Z, Y/Z), where we then get a correspondence
between rational points on Cf and nontrivial integer solutions to q = 0. But observe that there is
nothing special about the word “quadratic” here. We could have equally homogenize any polynomial
f ∈ K[x, y] of degree d by the same affine transformation x = X/Z and y = Y/Z to get its associated
form F via

F (X,Y, Z) = Zdf

(
X

Z
,
Y

Z

)
. (4.2)

Accordingly, if K = Q, we should expect the same correspondence between rational points on f
and nontrivial integer solutions to F = 0. We call (4.2) the homogenization of f . But since F is
homogeneous, F = 0 defines what we now call a projective curve, and so contains points that are in
correspondence with points on Cf together with some extra points at infinity. From a topological
point of view (although we never defined a topology on curves), this homogenization process can
be thought of taking the closure of the curve Cf .

Definition 4.7. Let C be the affine curve associated to f ∈ K[x, y] of degree d > 1. The projective
curve associated to the homogeneous polynomial

F (X,Y, Z) = Zdf

(
X

Z
,
Y

Z

)
,

is called the projective closure of C, and is denoted Ĉ.

Example. Let f(x, y) be a quadratic polynomial with associated quadratic form q. The curve
q = 0 is the projective closure of Cf .

We have a converse of this notion as well. That is, if we have a projective curve, then there is
a natural related affine curve to it.

Definition 4.8. Let Ĉ be the projective curve associated to F ∈ K[X,Y, Z]. The affine curve C
associated to the polynomial f(x, y) = F (x, y, 1) is called the projection of Ĉ onto A2.

Let f ∈ K[x1, . . . , xn] be a polynomial. We define the formal derivative (or partial derivative)
of F with respect to xi in the usual analysis sense, and write this as ∂f/∂xi. We then define the
tangent vector of f to be the n-tuple

∇f =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
of polynomials. Note that if K = R (or any of its subfields), then this coincide with what we are
used to in analysis. If K = C, we let the reader decide to use real analysis on R2 or the rich theory
of complex analysis (they are inherently the same anyways). But for general K, just consider this
as symbols as we never defined what does it mean to “differentiate” in arbitrary fields.

Definition 4.9. Let C be a projective plane curve associated to F (X,Y, Z) and let P ∈ C. We
say that P is a singular point of C (or C is singular at P ) if

∇F (P ) = 0.

Otherwise, we say that P is a nonsingular point of C. If C contains a singular point, we say that
C is singular. If otherwise C does not contain any singular points, we say that C is nonsingular
(or smooth). Finally, we say that an affine curve C is nonsingular if its projective closure Ĉ is
nonsingular, and vice-versa.

Example. Nonsingular degree 2 affine curves are just nondegenerate conics.
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4.2 Case 1: Singular cubics

We are now finally in a position to tackle the cubic curve

C : γ(x, y) = ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j = 0, (4.3)

where a, b, c, d, e, f, g, h, i, j ∈ Q. In this section, we shall first deal with the case where the cubic
has a singular point (i.e. the projective closure of (4.3) has a singular point). It turns out that in
this case, all the rational points are well-understood.

First, we show that there is a reduction of (4.3) into a simpler form when C is singular.
Suppose S = (x0, y0) is a singular point of C such that S ∈ C(Q). Without loss of generality, we
may assume that x0 = y0 = 0 since we can always apply the affine transformation x 7→ x + x0

and y 7→ y + y0. Geometrically, this is just a shifting of the affine plane. We now claim that the
constant term j, and linear terms hx and iy vanish:

(i). Since S = (0, 0) ∈ C(Q), it follows that j = γ(S) = 0.

(ii). Since we assumed that S is a singular point of C, this implies that ∇γ(S) vanishes or
equivalently,

h =
∂γ

∂x
(S) = 0, i =

∂γ

∂y
(S) = 0.

So we conclude that the singular point assumption allows us to rewrite (4.3) as

C : γ(x, y) = ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 = 0.

From here, we can concretely describe rational points on singular cubic curves.

Theorem 4.2. Let C : γ(x, y) = 0 be the cubic curve defined over Q by

γ(x, y) = ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 (4.4)

with singularity at (0, 0). Define the maps ν, δ : Q→ Q by

ν(λ) = eλ2 + fλ+ g, δ(λ) = aλ3 + bλ2 + cλ+ d.

Then the rational points on C is given by the union of three sets

C(Q) =
{

(0, 0),
(
− e
a
, 0
)}
∪
{(

s

t
,

1

t

)
: t ∈ Q×, ν(s) = 0

}
∪
{(
−sν(s)

δ(s)
,−ν(s)

δ(s)

)
: δ(s) 6= 0

}
,

for all possible s ∈ Q.

We will give a proof based on one given by Lozano-Robledo [12].

Proof. Let (x, y) ∈ C(Q). Let us look at this with a case by case approach.

The case y = 0. If y = 0, then γ(x, 0) = ax3 + ex2 = x2(ax+ e) = 0. This implies that x = 0

or x = −e/a. This gives the first set {(0, 0), (−e/a, 0)} in the union.

The case y 6= 0. If y 6= 0, then we can divide (4.4) by y3 to get

γ(x, y)

y3
= a

(
x

y

)3

+ b

(
x

y

)2

+ c

(
x

y

)
+ d+ e

(
x

y

)2(
1

y

)
+ f

(
x

y

)(
1

y

)
+ g

(
1

y

)
.

Note that this equation still define the same affine curve C. Next, we apply a change of variables
s = x/y and t = 1/y to get a new affine curve

C ′ : γ′(s, t) = (as3 + bs2 + cs+ d) + (es2t+ fst+ gt) = δ(s) + t ν(s) = 0,
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where ν, δ are maps as defined in the theorem’s statement. We also get a map between affine curves
φ : C \{(0, 0), (−e/a, 0)} ↪→ C ′ defined by

(x, y) 7−→
(
x

y
,

1

y

)
.

This map φ has an inverse given by

φ−1(s, t) =

(
s

t
,

1

t

)
= φ(s, t),

and so is a bijection. Consequently, it is enough to look at rational points on C ′ because the map
φ−1 passes the rational points on C ′ to rational points on C. There are two cases to look at when
considering rational points on C ′.

The case ν(s) = 0. If (s, t) ∈ Q2 is such that ν(s) = 0, then it follows immediately that
δ(s) = 0 and so (s, t) ∈ C ′(Q). Via the inverse map φ−1, we thus get (s/t, 1/t) ∈ C(Q) for all
t ∈ Q× in this particular case. This gives the second set in the union.

The case ν(s) 6= 0. If on the other hand (s, t) ∈ Q2 is such that ν(s) 6= 0, then we can solve
for t easily to get a rational point on C ′. For any s ∈ Q, the point (s, t) with

t = −ν(s)

δ(s)
,

defines a rational point on C ′. Via the inverse map φ−1, it follows that(
−sν(s)

δ(s)
,−ν(s)

δ(s)

)
∈ C(Q),

and this gives our third and final set in the union. �

This theorem summarizes all we need to know about rational points on singular cubic curves.
So, let us move on to the nonsingular case.

4.3 Case 2: Nonsingular cubics

It turns out that characterizing all the rational points on a nonsingular cubic is far from a trivial
problem and requires some very clever insights. So, this section has a completely different aim
compared to the preceding Section 4.2 on singular cubics. The goal here is to prove that every
nonsingular cubic curve can be put into a so-called Weierstrass form.

Definition 4.10. A Weierstrass equation (or form) over a field K is an equation of the form

y2 + axy + by = x3 + cx2 + dx+ e, (4.5)

where a, b, c, d, e ∈ K are constants. The special case with a = b = c = 0 reduces the equation to

y2 = x3 + dx+ e, (4.6)

which is called a Weierstrass normal form.

Over the rational numbers Q, we have the following lemma.

Lemma 4.3. There exists an invertible change of variables so that any Weierstrass equation over
Q can be transformed into a Weierstrass normal form.

Proof. Given the Weierstrass equation (4.5), we can complete the square (with respect to y) on
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the left-hand side to get

y2 + axy + by = y2 + y(ax+ b) +

(
ax+ b

2

)2

−
(
ax+ b

2

)2

=

(
y +

ax+ b

2

)2

−
(
ax+ b

2

)2

.

So we can rewrite (4.5) as(
y +

ax+ b

2

)2

= x3 + cx2 + dx+ e+

(
ax+ b

2

)2

. (4.7)

Now consider the change of variables

u = x, v = y +
ax+ b

2
.

Then equation (4.7) under this transformation becomes

v2 = u3 +Au2 +Bu+ C, (4.8)

where
A = c+

a2

4
, B = d+

ab

2
, C = e+

b2

4
.

Next, we seek a change of variables so that the square term vanishes. This can be achieved by
considering the transformation

s = u+
A

3
, t = v.

This transforms equation (4.8) into

t2 = s3 +Ds+ E,

where
D =

A2

3
+B, E = A

(
2A2

27
− B

3

)
+ C.

We are done now as this equation is in Weierstrass normal form. �

In the future, we shall also be concerned with Weierstrass equations which have integer coef-
ficients so we discuss this now. Consider the Weierstrass equation

y2 + axy + by = x3 + cx2 + dx+ e

where a, b, c, d, e ∈ Q. To make the coefficients integers, we need to remove the denominators
occuring in the coefficients. The obvious way to do it is thus to multiply both sides by the lowest
common multiple of the denominators of the coefficients. But this is not enough as the resulting
equation is not in Weierstrass form. The transformation that we need is the following: u = δ2x,
v = δ3y, where δ ∈ Z is the lowest common multiple that we required earlier. This puts the
equation into

v2 + (aδ)uv + (bδ3)v = u3 + (cδ2)u2 + (dδ4)u+ eδ6,

which has integer coefficients and is in Weierstrass form.

To give the main theorem of this section, we need the notion of birational equivalence (which we
actually have been using implicitly up until now). We shall give a simple definition of birational
equivalence due to Mordell [13]. The more complete definition of this can be found in almost
all algebraic geometry textbooks; one that we recommend is by Shafarevich which first gives an
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undergraduate-friendly definition (see Section 1.4 of [23]) and then gives the standard definition
(see Section 3.3 of [23]). For us, Mordell’s is good enough.

Definition 4.11. Let C : γ(x, y) = 0 and C ′ : Γ(u, v) = 0 be two affine curves defined over Q. We
say that C and C ′ are birationally equivalent if there is a relation

x = f(u, v) y = g(u, v); u = h(x, y), v = ι(x, y) (4.9)

except for a finite set of values, where f, g ∈ Q(x, y) and h, ι ∈ Q(u, v) are rational functions
defined over Q.

Remark 7. It is worth emphasizing (since our definition does not make it too obvious) that the
relation (4.9) are inverses to each other. That is, the map that sends (x, y) 7→ (f(u, v), g(u, v))

is the inverse to the map that sends (u, v) 7→ (h(x, y), ι(x, y)), and vice-versa. This justifies the
terminology birational as these are maps of rational functions (the right terminology is that these
are called rational maps, see [23] for more details).

We have seen that the unit circle is birationally equivalent to a line; and every bijection we
have between affine curves so far are also instances of birational equivalence. For example, the map
that allows us to talk only about rational points on C ′ in the proof of Theorem 4.2. In this proof,
we have seen just how powerful this idea is. Essentially, knowing the rational points on one curve
gives knowledge of the rational points on the other, and vice-versa. In fact, as we have mentioned
before, birational equivalence is actually one notion of isomorphism in algebraic geometry.

We now claim that every cubic curve with at least one nonsingular rational point is birationally
equivalent to a cubic defined by a Weierstrass normal form. This is our main result of this section.

Theorem 4.3. Any cubic curve C defined over Q, with at least one nonsingular rational point P
is birationally equivalent to a cubic curve defined by a Weierstrass normal form.

Note that we do not impose the condition that C is nonsingular everywhere. Our proof only
demands that C has one known nonsingular rational point P and allows C to be singular at any
other points different from P . We give a proof following closely one given by Lozano-Robledo [12],
and filling in some gaps based on idea from Silverman and Tate [26].

Proof. Let P be a nonsingular rational point on the cubic curve

C : γ(x, y) = ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j = 0,

which is defined over Q. The projective closure Ĉ of C is defined by the equation

Γ(X,Y, Z) = aX3 + bX2Y + cXY 2 + dY 3 + eX2Z + fXY Z + gY 2Z + hXZ2 + iY Z2 + jZ3 = 0.

Suppose P in projective coordinates is given by [x0, y0, z0] ∈ P2; and consider the tangent line to
Ĉ at P given by

L : w(X,Y, Z) = X
∂Γ

∂X
(P ) + Y

∂Γ

∂Y
(P ) + Z

∂Γ

∂Z
(P ) = a31X + a32Y + a33Z = 0,

where we have put

a31 =
∂Γ

∂X
(P ), a32 =

∂Γ

∂Y
(P ), a33 =

∂Γ

∂Z
(P ).

By definition (of L being tangent to Ĉ at P ), we know that L intersects C at P with multiplicity
of at least two. There is, however, a possibility that this intersection occurs with multiplicity
three but proving this is easier and similar to proving the case that the intersection occurs with
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multiplicity exactly two. So we focus only on the case of multiplicity exactly two.

In this case, we have L∩Ĉ = {P ,Q} where Q is a point different from P such that L intersects
C at Q with multiplicity one. It should be easy to see that Q has rational coordinates and so
belongs to Ĉ(Q). We now consider two more projective lines:

(i). LetM : u(X,Y, Z) = a11X+a12Y +a13Z = 0 be a line which goes through Q but is different
from L.

(ii). Let N : v(X,Y, Z) = a21X + a22Y + a23Z = 0 be any other line which goes through P ,
where the coefficients a21, a22, a23 are picked such that the following matrix

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33


has nonzero determinant, and so is invertible.

Using these lines, we can apply a projective transformation so that L acts as the new Z-axis,
M acts as the new X-axis and N acts as the new Y -axis. Such a projective transformation is
defined by the matrix A, or more explicitly by the change of variables

U = u(X,Y, Z), V = v(X,Y, Z), W = w(X,Y, Z).

SinceN is chosen so thatA is invertible, there is a clear passage to go from the (X,Y, Z) coordinates
to the (U, V,W ) coordinates and vice-versa. Most importantly, note that in this new coordinate
system, we necessarily have that

P = [1, 0, 0], Q = [0, 1, 0]. (4.10)

This is true because, P ∈ N and P ∈ L which implies that V = v(P ) = 0 and W = w(P ) = 0.
Similarly, Q ∈M and Q ∈ L which implies that U = u(Q) = 0 and W = w(Q) = 0.

Now, suppose that Ĉ is given by the equation ∆(U, V,W ) = 0 in this new coordinate system
with ∆ being the polynomial

∆(U, V,W ) = aU3 + bU2V + cUV 2 + dV 3 + eU2W + fUVW + gV 2W + hUW 2 + iV W 2 + jW 3,

where the constants a, b, c, d, e, f, g, h, i, j ∈ Q and are not necessarily the same as the one in Γ.

Lemma. We claim that the terms aU3, bU2V and dV 3 vanish. For this, we require (4.10).

(i). By hypothesis, P ∈ Ĉ. So, by definition a = ∆([1, 0, 0]) = ∆(P ) = 0.

(ii). By our choice, Q ∈ Ĉ. So, by definition d = ∆([0, 1, 0]) = ∆(Q) = 0.

(iii). Consider the intersection Ĉ ∩ L in (U, V,W ) coordinates. In this intersection W vanishes
and so together with our discovery in (i) and (ii) that a = d = 0, we have the reduced form

∆(U, V,W ) = bU2V + cUV 2 = UV (bU + cV ).

Now recall that Ĉ ∩ L = {P ,Q} where P occurs with multiplicity two and Q occurs with
multiplicity one. If we view the right-hand side of the reduced ∆ as a product of three linear
factors, we then see that Q solves the equation U = 0 and P solves the equation V = 0; but
most importantly, P solves the equation bU + cV = 0 which implies that b = 0, as desired.
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So we have shown that ∆ can be further reduced to

∆(U, V,W ) = cUV 2 + eU2W + fUVW + gV 2W + hUW 2 + iV W 2 + jW 3.

Next, we consider the projection of Ĉ that is currently defined by ∆(U, V,W ) = 0 onto the affine
plane A2. This can be done by taking δ(s, t) = ∆(s, t, 1) and so we get the affine curve

C : δ(s, t) = cst2 + es2 + fst+ gt2 + hs+ it+ j = 0.

We can group the t2 terms and write δ(s, t) = (cs+ g)t2 + es2 + fst+ hs+ it+ j. We then apply
our first change of variables via the affine transformation (s, t) 7→ (cs + g, t) so that our curve is
defined by

C ′ : δ′(s, t) = st2 + es2 + fst+ hs+ it+ j = 0.

Next, we multiply δ′(s, t) by s to get sδ′(s, t) = (st)2 + es3 + fs(st) + hs2 + i(st) + js. Then, we
consider the invertible (for t 6= 0) change of variables

x̃ = s, ỹ = st,

to get a new affine curve

C ′′ : δ′′(x̃, ỹ) = ỹ2 + fx̃ỹ + iỹ = kx̃3 + `x̃2 +mx̃.

Finally, if we consider the change of variables

x = kx̃, y = k2ỹ,

we get a new affine curve

C ′′′ : y2 + axy + by = x3 + cx2 + dx+ e,

for some a, b, c, d, e ∈ Q. The equation defining C ′′′ is a Weierstrass equation, and so by Lemma
4.3, this equation can be put into Weierstrass normal form. All the change of variables we have
used are invertible except for a finite set of points, and so their composition defines a bijection
C → C ′′′. That is, C and C ′′′ are birationally equivalent, as desired. �

So to understand rational points on nonsingular cubic curves, the birational equivalence we
have just established above says that it suffices to study rational points on cubic curves given by a
Weierstrass normal form. Such cubic curves are captured by a class of curves called elliptic curves.

4.4 Elliptic curves

Definition 4.12. An elliptic curve over Q is a nonsingular projective cubic curve E defined over
Q with at least one rational point O, called the origin. We will denote such an elliptic curve as
E/Q, and denote its set of rational points as E(Q).

Remark 8. This definition extends naturally to general fields — just replace Q with a field K

everywhere. In particular, we shall write E/K for an elliptic curve over K.

Despite an elliptic curve E being defined over projective planes, we would usually only consider
affine charts of E. That is, we talk about the projection of E onto the affine plane, but always
being conscious that we would miss some points by doing it this way. The points that we missed
are of course, the points at infinity (cf. discussion (4.1) about P2 decomposition).

Definition 4.13. Let E be an elliptic curve with origin O, and let Ẽ be an elliptic curve with

42



origin Õ. We say that E and Ẽ are isomorphic over Q if there exists an invertible change of
variables φ : E → Ẽ (called an isomorphism) defined by

[x, y, z] 7→ [f(x, y, z), g(x, y, z), h(x, y, z)] ,

where f, g, h are rational functions with coefficients in Q, such that φ(O) = Õ.

Proposition 4.1 ([11], Chapter 2.2, Proposition 2.2.2). Let K be a field of characteristic not 2

or 3, and let E/K be an elliptic curve with origin O. Then there exists an elliptic curve Ẽ, whose
origin is [0, 1, 0], defined by the equation

ZY 2 = X3 + aXZ2 + bZ3, (4.11)

where a, b ∈ K is such that 4a3 + 27b2 6= 0. Moreover, E and Ẽ are isomorphic over Q, and so O
is mapped to [0, 1, 0] under this isomorphism.

The proof of this proposition is beyond the scope of this paper as it uses the Riemann-Roch
theorem. For the adventurous readers, we invite you to read Chapter III, Proposition 3.1 of
Silverman [24] for a proof.

Before we talk about what Proposition 4.1 means for us, let us look at the subtle hypothesis
and consequences. Firstly, notice that the origin [0, 1, 0] is the unique point at infinity on Ẽ. To
see this, observe what happens when we set Z = 0. The equation reduces to X3 = 0 which implies
that X = 0. Since any element [x, y, z] ∈ P2 cannot have x, y, z all simultaneously zero, it follows
that y 6= 0 in our case. So after scaling, [0, 1, 0] gives the only point at infinity on Ẽ. Next, notice
that the projection of Ẽ onto A2 is given by

y2 = x3 + ax+ b, (4.12)

which is in Weierstrass normal form. From here, the hypothesis that 4a3 + 27b2 6= 0 in (i) of the
proposition should make more sense. This condition ensures that (4.12) has distinct roots and so
is nonsingular. This condition of nonsingularity will be important for us, especially when we talk
about elliptic curves over finite fields in Section 4.5.

Definition 4.14. Let E/Q be an elliptic curve with Weierstrass equation y2 = x3 + ax+ b where
a, b ∈ Q. The discriminant of E is defined to be ∆E = −16(4a3 + 27b2).

Proposition 4.1 tells us that it suffices to talk about the projective curve (4.11) if we want to
talk about elliptic curves over any field of characteristic different from 2 or 3. This is good as we
are mostly interested when K = Q which has characteristic 0.

4.4.1 A group structure on E(Q)

Perhaps, one of the most amazing feat about the study of elliptic curves is the idea that we can
give the set E(Q) a group structure by purely using a geometric argument. As we shall see, this
has powerful consequences. The question now is how do we do this?

First, let us make sure that we are on the same page, and thinking about the same things.
We will focus only on the elliptic curve E : y2 = x3 + ax + b with a, b ∈ Q. Next, recall that we
define the notation C(Q) = C ∩Q only for affine curves C. We could think of E(Q) as the set of
rational points on the affine curve y2 = x3 + ax+ b. But as discussed before, we still need to keep
track of the points at infinity. We solve this subtle issue by defining

E(Q) := (E ∩Q) ∪ {O} ,

43



with O = [0, 1, 0] being the (unique) point at infinity of E.

To put a group structure on E(Q), we first need to define a binary operation on it. Let
P = (x1, y1) and Q = (x2, y2) be rational points on E, and let L be the line through the points P
and Q. We first claim the following.

Lemma 4.4 (Partial closure). The line L that goes through the points P ,Q ∈ E(Q) meets a third
point in E(Q), which we will denote as P ∗Q.

This is called partial closure because as we shall see, this is not how we would define a binary
operation on E(Q), and so is not the full closure that we want for a binary operation. However,
the partial closure implies the closure of the desired operation. The proof of this lemma should
feel routine by now.

Proof. Let P = (x1, y1) and Q = (x2, y2), and let L be the line through P and Q . We have two
cases to take care of.

Case 1: x1 6= x2. It should be immediate to see that L has rational slope. To see that L meets
at a third point P ∗Q ∈ E(Q), we solve the system given by the intersection L∩E. Suppose L is
defined by the equation y = mx+ c, where

m =
y2 − y1
x2 − x1

, c = y1 −mx1 = y2 −mx2,

are rational numbers. Then, solving the systemy = mx+ c,

y2 = x3 + ax+ b,

we get the equation p(x) = x3 −m2x2 + Ax + B, for some A,B ∈ Q. Since the sum of roots of
p(x) add up to m2 ∈ Q and x1, x2 are roots, it follows that the third root x3 = m2 − x1 − x2 is
rational. Consequently, y3 = mx3 + c is rational and thus

P ∗Q = (x3, y3) = (x3, mx3 + c) (4.13)

gives a third rational point on E.

Case 2: x1 = x2. In this setting, we are forced to either have y1 = −y2 or y1 = y2. If y1 = −y2,
then L is a vertical line so we take P ∗Q = O (this also hints towards a possible candidate for
the inverse of the group law). On the other hand, if y1 = y2, then we have P = Q. The approach
earlier does not fail completely in this setting. The only problem is that the slope m is no longer
defined if we compute it in the same way as before. Otherwise, once we find a suitable line, the
remaining steps should be identical. A reasonable line to use in this setting is the tangent line to
E at P , so let L be this line. The slope of L can be computed by implicit differentiation of the
equation y2 = x3 + ax+ b and substituting P . This gives that

m =
3x21 + a

2y1

is the slope of L, and use this m in (4.13) to get the desired third rational point. �

Remark 9. Notice that equation (4.13) effectively gives us an explicit algorithm to compute the
third point P ∗Q for both cases that P = Q and P 6= Q.

Knowing this fact, we now attempt to define addition, the desired binary operation, of two
points P ,Q ∈ E(Q). Unsurprisingly, we will denote addition by +. Firstly, if P = Q = O, then
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we shall define O + O = O. This can be taken as a pure convention, but was actually justified
when we discussed the subtle assumptions in Proposition 4.1. Now, suppose P ,Q are not both
O. It is tempting to define P +Q = P ∗Q, but then what is the identity element of the resulting
group (E(Q),+)? Playing around with points using equation (4.13), we see that there is none so
it is not a group! Instead, after getting P ∗Q, we draw a vertical line L′ through P ∗Q and O,
and define the third intersection of L′ ∩ E to be P + Q. In other words, we shall define

P + Q = (P ∗Q) ∗ O.

There is an easy geometrical interpretation of this. Observe that the projective closure of the affine
(vertical) line ` : x = c is given by the projective line ̂̀ : X = cZ. Clearly, this line passes through
[0, 1, 0]. Since we have seen that our choice of elliptic curve E has the unique point at infinity
O = [0, 1, 0], this guarantees that any line that passes through O is a vertical line. Accordingly, for
any point R ∈ E(Q), the point O ∗R is the reflection of R in the x-axis. Note however that this
is not true if the equation defining the elliptic curve is not given by a Weierstrass normal form, so
we have to be careful about generalizing this.

Remark 10 (Addition algorithm). Since we now know that P + Q = (P ∗ Q) ∗ O is just the
reflection of P ∗Q in the x-axis, it follows that equation (4.13) defines an algorithm to compute
P +Q as well simply by putting a minus sign in the y-coordinate. Let us summarize the algorithm:
let P = (x1, y1) and Q = (x2, y2) be rational points on the curve E/Q : y2 = x3 + ax+ b, then

(i). If P 6= Q but x1 = x2, then P + Q = O.

(ii). If P = Q but y1 = y2 = 0, then P + Q = O.

(iii). Otherwise, P + Q = (x3,−mx3 − c), where x3 = m2 − x1 − x2 and

m =


y2 − y1
x2 − x1

, if P 6= Q and x1 6= x2,

3x21 + a

2y1
, if P = Q and y1 6= 0,

and c = y1 −mx1 = y2 −mx2.

From (iii), we further get an explicit formula for the x-coordinate of points of the form 2P = P +P .
Denote this as x(2P ). Then

x(2P ) = m2 − 2x1 =

(
3x21 + a

2y1

)2

− 2x1 =
9x31 + 6ax21 + a2

4y21
− 2x1.

If we replace y2 by x3 + ax+ b, then we end up with

x(2P ) =
x41 − 2ax21 − 8bx1 + a2

4x31 + 4ax1 + 4b
.

This formula for computing x(2P ) using only information about the x-coordinate of the point P
is known as the duplication formula and is important both as a theoretical tool (i.e. to prove
theorems) and as a computational tool.

By the partial closure lemma (applied twice), (P ∗Q)∗O is an element of E(Q). Accordingly,
P + Q ∈ E(Q), and so + defines a binary operation on E(Q).

Theorem 4.4. The pair (E(Q),+) is an abelian group with identity O.

Proof. We first prove that it is a group, and then prove commutativity of +. The only convention
that we shall consider is that O +O = O.
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O is the identity element. Some books actually take this as a convention as well. To prove
this, we have to prove that P + O = O + P = P for all P ∈ E(Q). If P = O, we are done so
suppose not. We have that P + O = (P ∗ O) ∗ O. The line L that goes through P and O is a
vertical line which meets P ∗O. Consequently, the line that goes through O and P ∗O is the same
vertical line which meets P as the third point. Therefore, P +O = (P ∗O) ∗O = P . By a similar
argument, O + P = P .

Additive inverse of a point P . For our model of the elliptic curve, we claim that if P =

(x, y), then its additive inverse is given by −P = (x,−y), the reflection of P in the x-axis. For this,
we need to prove that P + (−P ) = O. Again, we unpack definitions: P + (−P ) = (P ∗ (−P ))∗O.
The line that goes through P and −P is the vertical line that meets O as the third intersection
point. The line that goes through O and O is the line at infinity and so meets O as the third
intersection point, as desired. Note that this argument works for P 6= O, but it should be easy to
see that −O = O. Also note that this argument would not be as effective if our model of elliptic
curve is different as we have mentioned before.

Associativity of +. Associativity is the hardest part which we shall not prove. For a proof,
see Section 2.4 of Washington [29].

Commutativity of +. The line that goes through P and Q is the same line that goes
through Q and P . Accordingly, P ∗Q = Q ∗ P and so P + Q = Q + P , as desired. �

Since E(Q) is now a group, we can talk about order of elements. A point P ∈ E(Q) is said
to have finite order n ∈ Z+ if n is the least integer such that nP = P + · · ·+ P = O. Any point
of finite order n is also called a torsion point of order n. If no such n exists, we say P has infinite
order.

4.4.2 Mordell-Weil theorem

From the structure theorem of abelian groups, we know that any finitely generated abelian group
can be decomposed into a torsion part and a free part (for readers that are not familiar with this
theorem, see Chapter 12, Section 6 of Artin [2]). A remarkable result proved by Mordell tells us
that E(Q) is in fact a finitely generated abelian group, and so has such a decomposition.

Theorem 4.5 (Mordell-Weil theorem). Let E/Q be an elliptic curve. Then E(Q) is a finitely
generated abelian group.

More explicitly, the Mordell-Weil theorem tells us that there is a finite set of rational points

{Q1, . . . ,Qn} ⊆ E(Q),

which generates all the rational points on E. In other words, any other point P ∈ E(Q) is just a
Z-linear combination of the Qi. This theorem was initially proven by Mordell in 1922 and later
generalized by Weil in 1928 to abelian varities over number fields. We note that these are deep
results of number theory, especially the generalization. For those unfamiliar with number fields,
they are fields containing Q, such that as Q-vector spaces, have finite dimension. The simplest
example of a number field is Q itself — it has dimension 1 as a Q-vector space. The definition of
an abelian variety is a bit too technical to describe in only a few sentences. But one can think of
it as simply a generalization of elliptic curves. Abelian varieties form one of the most important
objects in algebraic geometry.

46



In honor of Mordell and Weil, the group E(Q) is often called the Mordell-Weil group of E.
The proof of the Mordell-Weil theorem relies on three main ingredients:

(1). The weak Mordell-Weil theorem (see Theorem 4.6 below).

(2). The idea of a height function on an abelian group A.

(3). The descent theorem which says that an abelian group A with a height function, such that
A/2A is finite, is finitely generated.

We will give a brief but precise overview of what these statements mean. First, the weak
Mordell-Weil theorem.

Theorem 4.6 (Weak Mordell-Weil theorem). Let E/Q be an elliptic curve. Then the quotient
group E(Q)/mE(Q) is a finite group for all m > 2.

For the rest of this discussion, we fix E/Q to be the elliptic curve defined by the Weierstrass
equation y2 = x3 + ax+ b where a, b ∈ Z.

An elementary proof of the weak Mordell-Weil theorem for m = 2 can be found in Lozano-
Robledo [11], Section 2.8 and Washington [29], Section 8.2. However, here they make the assump-
tion that E(Q) has four distinct torsion points of order 2. So their proof does not work for elliptic
curves in its full generality, but that is the usual price for elementary proofs. The reason behind
this quite restrictive assumption is so that we can write the Weierstrass equation of E as a product

x3 + ax+ b = (x− e1)(x− e2)(x− e3),

where the ei are all distinct integers. The proof is done by ingeniously considering a group homo-
morphism

E(Q) −→ (Q×/Q×2
)× (Q×/Q×2

)× (Q×/Q×2
) = (Q×/Q×2

)3

whose kernel is 2E(Q). It turns out that this homomorphism induces an injection of E(Q)/2E(Q)

into a finite subgroup Γ of (Q×/Q×2
)3. Since Γ is finite, the claim follows. The proof that takes

care of the general case as in Theorem 4.6 (in fact, more general as Q is replaced by a number field)
is done in Silverman [24], Section VIII.1. Here, they use a quite advanced tool from cohomology
theory called group cohomology (for a basic exposition of this, see Appendix B of the same book
[24]).

We now move to the second statement about height functions.

Definition 4.15. Let x ∈ Q, and suppose x = m/n is written in lowest terms. The height of x
is the positive integer defined by H(x) = max {|m|, |n|}.

Using the notion of height on rational numbers, we can define a height function on E(Q). For
any point P ∈ E(Q), write P = (xP , yP ).

Definition 4.16. The (logarithmic) height on E(Q) is a map h : E(Q)→ R defined by

h(P ) =

logH(xP ), if P 6= O,

0, if P = O.

Remark 11. Note that the definition of height on E(Q) is relative to the Weierstrass equation
defining E. Also, note that h(P ) > 0 for all P .

The purpose of a height function on E(Q) is that we want a device to measure the complexity
of a rational point, at least in a number-theoretic sense. In particular, if given two points, we want
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to be able to tell which point is “smaller” relative to the other. This allows us to run Fermat’s
descent argument, just like we did when proving Lemma 3.6.

We now state and prove the descent theorem mentioned in the third statement.

Theorem 4.7 (Descent theorem). Let A be an abelian group, and suppose there exists a map
h : A→ [0,∞) satisfying the following three properties:

(i) For every constant C1 ∈ R, the set {P ∈ A : h(P ) 6 C1} is finite.

(ii) For every P0 ∈ A, there exists a constant C2 such that

h(P + P0) 6 2h(P ) + C2, for all P ∈ A.

(iii) There exists a constant C3 such that

h(2P ) > 4h(P )− C3, for all P ∈ A.

Suppose further that the quotient group A/2A is finite. Then A is finitely generated.

We give a proof that is adapted from Silverman and Tate [26].

Proof. Pick an element Qi for each coset of 2A in A to get a finite list Q1, . . . ,Qn of coset
representatives. We can do this since we assumed that A/2A is a finite group. Now let P ∈ A.
Since the cosets of 2A partitions A, we can find an index 1 6 i1 6 n such that

P = 2P1 + Qi1 , (4.14)

for some P1 ∈ A. We repeat the same idea with P1, and keep repeating to get a list of points

P1 = 2P2 + Qi2 ,

P2 = 2P3 + Qi3 ,

...

Pm−1 = 2Pm + Qim ,

where 1 6 ij 6 n. From here, we can do back substitution. We start by substituting the equation
P1 = 2P2 + Qi2 into its preceding equation (4.14). We then substitute P2 = 2P3 + Qi3 into
P1 = 2P2 + Qi2 , so on and so forth. This results in P being written as a linear combination of
Pm and the Qi,

P = 2mPm +

m∑
j=1

2j−1Qij .

Equivalently, we have that the set {Q1, . . . ,Qn,Pm} forms a (not necessarily finite) generating set
for A. Our aim now is to show that we can choose m sufficiently large so that h(Pm) is bounded
by a constant κ independent of P . This would imply that the set

Gκ = {Q1, . . . ,Qn} ∪ {R ∈ A : h(R) 6 κ}

forms a finite generating set for A, where the finiteness is due to property (i).

To bound h(Pm), we need some important constants which we can get by playing around with
properties (ii) and (iii). We apply property (ii) on each −Qi to get constants ci such that

h(P −Qi) 6 2h(P ) + ci,
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for all P ∈ A. If we set C2 = max16i6n {ci}, then we in fact have

h(P −Qi) 6 2h(P ) + C2, (4.15)

for all P ∈ A and all 1 6 i 6 n. Next, for any index j, we apply property (iii) to get a constant
C3 such that

h(Pj) 6
1

4
(h(2Pj) + C3) =

1

4
(h(Pj−1 −Qij ) + C3)

6
1

4
(2h(Pj−1) + C2 + C3) =

1

2
h(Pj−1) +

C2 + C3

4
,

where we have used (4.15) in the second inequality. We can then cleverly manipulate the right-hand
side to get

h(Pj) 6
3

4
h(Pj−1)− 1

4
(h(Pj−1)− (C2 + C3)) .

From here, we can clearly see that if h(Pj−1) > C2 + C3, then

h(Pj) 6
3

4
h(Pj−1).

Moreover, this is true for any index j. So if we still have h(Pj) > C2 + C3, then the next point
Pj+1 must have a smaller height

h(Pj+1) 6
3

4
h(Pj) 6

(
3

4

)2

h(Pj−1).

If we do this repeatedly, we accumulate a factor of 3/4 at each step; and so the height decreases
for each point until some point Pm, whose height satisfies h(Pm) 6 C2 + C3. It then follows that
the set

GC2+C3 = {Q1, . . . ,Qn} ∪ {R ∈ A : h(R) 6 C2 + C3}

is a finite generating set for A, and hence, A is finitely generated. �

So for us, if we can prove that the height function on E(Q) satisfy the three properties (i)-(iii)
above, we get the Mordell-Weil theorem by taking A = E(Q). Property (i) is quite trivial to prove.

Lemma 4.5. For every constant C1 ∈ R, the set {P ∈ E(Q) : h(P ) 6 C1} is finite.

Proof. If x = m/n is written in lowest terms, and that its height H(x) 6 κ for some constant
κ ∈ R, it follows that |m|, |n| 6 κ. Since m,n are integers, then there are only finitely many
possibilities for m,n. So we have proved that for any constant κ ∈ R, the set

{x ∈ Q : H(x) 6 κ} ⊆ Q

is finite. Now given any x ∈ Q, there are only two possibilities that y can take if (x, y) ∈ E(Q). So
if we restrict to finitely many possibilities for x, we have only finitely many (x, y) ∈ E(Q). This
proves that for any constant κ′, the set

{P ∈ E(Q) : H(P ) 6 κ′}

is finite, and the same holds true if replace H with h. �

Property (ii) and (iii) are a bit more involved and so we only state them here as a lemma. For
a proof, see Silverman-Tate [26], Section 3.1 or Silverman [24], Section VIII.4.

Lemma 4.6. Let E/Q be an elliptic curve defined by y2 = x3 + ax+ b where a, b ∈ Z.
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(a). Let P0 ∈ E(Q). Then there exists a constant C2, depending on P0, a, and b, such that

h(P + P0) 6 2h(P ) + C2, for all P ∈ E(Q).

(b). There exists a constant C3, that depends on a and b, such that

h(2P ) > 4h(P )− C3, for all P ∈ E(Q).

For readers who are interested in proving the Mordell-Weil theorem in more generality (but
still not to the extent of Weil’s result), see Silverman [24], Chapter VIII. Here, they prove the
theorem for elliptic curves over an arbitrary number field K instead of just Q. The idea is to define
a general height function HK on the projective n-space Pn. Since elliptic curves are really just
subsets of Pn, we can then look at the properties of HK when the points on Pn are restricted to
the points on the elliptic curve.

4.4.3 Mazur’s torsion theorem and the Nagell-Lutz theorem

As mentioned before, the structure theorem implies that E(Q) decomposes into abelian groups

E(Q) ∼= E(Q)tors ⊕ Zr,

for some positive integer r. The integer r is called the rank of E(Q), and E(Q)tors is called the
torsion subgroup of E(Q) which contains the torsion (rational) points on E. Note that if r = 0,
then E(Q) is torsion and so is a finite abelian group. It turns out that the torsion part E(Q)tors

is well-understood thanks to the work of Barry Mazur in 1977. Consequently, we have understood
all the rational points on elliptic curves over Q with rank r = 0.

Theorem 4.8 (Mazur’s torsion theorem). Let E/Q be an elliptic curve. Then E(Q)tors can be
identified with exactly one of the following 15 groups:

(1). Z/mZ for 1 6 m 6 10 or m = 12.

(2). (Z/2Z)× (Z/2mZ) for 1 6 m 6 4.

In particular, the cardinality of E(Q)tors is bounded: |E(Q)tors| 6 16.

The proof of this theorem is quite deep and we will not discuss it. Mazur’s theorem is nice
but it does not give us a method to compute the torsion subgroup of E(Q). An effective method
that allows us to compute E(Q)tors is given by the following theorem of Nagell and Lutz.

Theorem 4.9 (Nagell-Lutz theorem). Let E/Q be an elliptic curve defined by the Weierstrass
equation y2 = x3 + ax+ b, where a, b ∈ Z. If (x0, y0) ∈ E(Q) is a nonzero torsion point, then

(1). (x0, y0) ∈ Z2.

(2). Either y0 = 0 and so (x0, y0) has order 2, or y20 divides 4a3 + 27b2.

Proof. See Silverman and Tate [26]. �

Let us use the Nagell-Lutz theorem to compute torsion points.

Example. Consider the elliptic curve E : y2 = x3 + 1849. Note that 1849 = 432 and 43 is a prime
number. Observe that E follows the setup of the Nagell-Lutz theorem with a = 0 and b = 1849 so
we can apply it.

Is there a point of order 2? This is easily verified to be no. By the rational root theorem, the
only possible rational solutions to x3 + 1849 = 0 are {±43,±1849} but none of these satisfy our
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equation. It follows that y2 6= 0 and so y 6= 0. So any torsion point on E cannot possibly have
order 2.

What are the torsion points on E? Let (x0, y0) ∈ E(Q) be a torsion point. It cannot have order 2,
so y20 divides 4a3 + 27b2 = 27 · 18492 = 33 · 434. The possible candidates for y0 are then

S = {±1, ±3, ±43, ±129, ±1849, ±5547} .

By inspection, we see that (0,±43) ∈ E(Q). We claim that Q = (0, 43) is a torsion point of order
3. We see that the tangent line to E at Q is defined by the line ` : y = 43. Using the explicit
algorithm of adding points (see Remark 10) in E(Q), we have

2Q = Q + Q = (0,−43) = −Q.

It thus follows that 3Q = Q + 2Q = Q − Q = O as desired. Note that consequently, −Q is
also a torsion point of order 3. We now make another claim that in fact E(Q)tors = {O,Q, 2Q}
and so is isomorphic (as groups) to Z/3Z. To prove this, we simply have to rule out all the other
possibilities we had earlier. But this is easy as for any y1 ∈ S, the real solution x1 to the equation
x3 = y21 − 1849 is not an integer. By the Nagell-Lutz theorem, it follows that (x1, y1) /∈ E(Q)tors.
We thus conclude that E(Q)tors ∼= Z/3Z which agrees with Mazur’s torsion theorem.

4.5 Elliptic curve over finite fields

Recall that Fp = Z/pZ is the finite field of p elements where p is a prime number. We shall now
look at elliptic curves defined over Fp.

Let p be a prime number and suppose E/Q is an elliptic curve defined by the Weierstrass
equation y2 = x3 + ax + b where a, b ∈ Z. We can reduce the coefficients modulo p to get a new
cubic curve Ẽ, called the reduction curve modulo p, which is now defined over Fp. However, Ẽ/Fp
is not necessarily an elliptic curve as it may be singular!

Definition 4.17. Let E/Q be an elliptic curve defined by the Weierstrass equation y2 = x3+ax+b

where a, b ∈ Q. Define S to be the set of elliptic curves

S = {E′ : E′ is isomorphic to E over Q, and ∆E′ ∈ Z} .

The minimal discriminant of E is defined to be the integer

∆min,E = min
E′∈S

|∆E′ |.

The elliptic curve model E′ with minimal discriminant of E is then said to be a minimal model
for E.

Remark 12. To summarize, a minimal model for E is an elliptic curve isomorphic to E such that
its discriminant is an integer and (in absolute value) is as small as possible.

Due to the possibilities of cubic curves being singular once again, we need to talk about special
type of singularities that will hold some interest for us. Let P = (x0, y0) be a singular point of the
cubic curve

C : f(x, y) = y2 + axy + by − x3 − cx2 − dx− e = 0,

which is defined over K and given by a Weierstrass equation. By definition of a singular point, we
have that ∇(P ) = 0. So, there exist α, β ∈ K̄ such that we can write the Taylor series expansion
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of f around P in the following way:

f(x, y)− f(x0, y0) = ((y − y0)− α(x− x0)) ((y − y0)− β(x− x0))− (x− x0)3.

Definition 4.18. With notation as used above, we say that the singular point P = (x0, y0) is

(i). A node if α 6= β, in which case there are two different tangent lines to C at P given by:

y − y0 = α(x− x0), y − y0 = β(x− x0).

(ii). A cusp if α = β, in which case there is a unique tangent line to C at P given by

y − y0 = α(x− x0).

Definition 4.19. Let E/Q be an elliptic curve, and let Ẽ be the reduction curve modulo p of a
minimal model for E. We say that

(1). E has good (or stable) reduction if Ẽ is nonsingular.

(2). E has multiplicative (or semistable) reduction if Ẽ has a node.

(3). E has additive (or unstable) reduction if Ẽ has a cusp.

We say that E has bad reduction if it has either multiplicative or additive reduction. If E
has multiplicative reduction at a singular point P , we further say that the reduction is split
multiplicative if the slopes of the tangent line to E at P are in Fp. Otherwise, we say that it is
non-split.

We now claim that if E/Q is an elliptic curve given by a minimal model, then E has bad
reduction at a prime p if and only if p | ∆E . For this, we first need some lemmas.

Lemma 4.7. Let f ∈ K[x] be a polynomial over a field K, and let its derivative be f ′. Then λ is
a double root of f if and only if f(λ) = f ′(λ) = 0.

Proof. Suppose that λ is a double root of f . Then there exists a polynomial g ∈ K[x] such that
f(x) = (x− λ)2g(x). Taking the derivative of f , we get

f ′(x) = 2(x− λ)g(x) + (x− λ)2g′(x).

It is then immediate to see that f ′(x) also vanishes at λ.

The converse is a bit tricky. Suppose now that f(λ) = f ′(λ) = 0. By the division algorithm
(applied to (x− λ)2 and f), there exist polynomials q, r ∈ K[x] such that

f(x) = (x− λ)2q(x) + r(x),

where either deg r < deg(x− λ)2 = 2 or r(x) = 0. If r(x) = 0, we are done so suppose not. Then
r(x) = ax+ b for some a, b ∈ K with derivative r′(x) = a. Taking the derivative of f , we get

f ′(x) = 2(x− λ)q(x) + (x− λ)2q′(x) + r′(x).

Applying our hypothesis that f(λ) = f ′(λ) = 0, we get the relation r(λ) = r′(λ) = 0. But this
implies that a = b = 0 and so r(x) is identically zero. So we conclude that λ is a double root of f
as desired. �
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Lemma 4.8. Let f ∈ K[x] be a monic cubic polynomial over a field K and consider the cubic
curve C : y2 = f(x). Then the singular points on C, if they exist, are of the form (λ, 0) where λ
is a double root of f .

Proof. Suppose that P = (x0, y0) is a singular point on C. We want to prove that y0 = 0 and
x0 = λ for some root λ ∈ K of f . Suppose f(x) = x3 + ax2 + bx+ c and consider the polynomial
F (x, y) = y2 − f(x). For P to be a singular point, it follows that we must have ∇F (P ) = 0. So,
we require that

∂F

∂y
(P ) = 2y0 = 2

√
f(x0) = 0,

which implies that we require y0 = 0 and f(x0) = 0. And, we require

∂F

∂x
(P ) = −3x20 − 2ax0 − b = −f ′(x0) = 0,

which implies that f ′(x0) = 0. By Lemma 4.7, it follows that x0 is a double root of f . �

Proposition 4.2 ([11], Chapter 2, Proposition 2.5.8). Let C : y2 = f(x) be a cubic curve where
f(x) ∈ K[x] is a monic cubic polynomial. Suppose that f is given by f(x) = (x−α)(x− β)(x− γ)

where α, β, γ ∈ K̄ and define D = (α− β)2(α− γ)2(β − γ)2. Then C is nonsingular if and only if
D 6= 0.

Note that α, β, γ are elements of the algebraic closure of K so that the factorization of f into
linear factors make sense in general.

Proof. We shall prove that C is singular if and only if D = 0.

Suppose that C is singular. Then by Lemma 4.8, the singular points on C are of the form (λ, 0)

where λ is a double root of f . Accordingly, at least two of α, β, γ are equal and so D = 0.

The proof of the converse is similar to the proof of Lemma 4.8. Assume that D = 0. Then at least
two of α, β, γ are equal, so suppose α = β. This implies that f(x) = (x − α)2(x − γ) and so α is
a double root of f . By Lemma 4.7, it follows that f ′(α) = 0. Now let F (x, y) = y2 − f(x) and
consider its tangent vector

∇F = (−f ′(x), 2y) =
(
−f ′(x), 2

√
f(x)

)
.

We then immediately see that (α, 0) defines a singular point on C, and so C is singular. �

Notice that the number D is the usual discriminant of a cubic. If we consider the cubic
polynomial f(x) = x3 + ax + b, then one can compute that this polynomial has discriminant
D = −4a3 − 27b2. This quantity should look strikingly familiar. This is because we have defined
the discriminant of the elliptic curve E : y2 = f(x) to be ∆E = −16(4a3 + 27b2) = 16D. This
observation combined with Proposition 4.2 gives rise to the following corollary.

Corollary 4.1. Let p be a prime number, and let E/Q be an elliptic curve given by a minimal
model. Then E has bad reduction at p if and only if p | ∆E.

Now consider the elliptic curve E/Fq defined over a finite field where q = pr is a prime power.
A question that we can then ask is how many points are there in E(Fq)? We know that there
are only a finite number of points as E(Fq) ⊆ P2(Fq), but is there an estimate for this number
Nq := #E(Fq)? This is answered by the following result, conjectured by Emil Artin in his thesis
and finally proved by Hasse in 1933.
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Theorem 4.10 (Hasse, 1933). Let E/Fq be an elliptic curve with coefficients in Fq. Then there
is a bound

|q + 1−Nq| 6 2
√
q,

where Nq = #E(Fq).

Proof. See Chapter V, Theorem 1.1 of Silverman [24]. �

By using Hasse’s bound, Schoof [20] established an algorithmic approach to get the exact
number of Nq which is definitely worth a read.

4.5.1 Introduction to L-functions and modular forms

Let E/Q be an elliptic curve defined by the Weierstrass equation

y2 + axy + by = x3 + cx2 + dx+ e,

where a, b, c, d, e ∈ Z. For a prime number p, we define a new quantity

ap =



p+ 1−Np, if E has good reduction at p.

1, if E has split multiplicative reduction at p.

−1, if E has non-split multiplicative reduction at p.

0, if E has additive reduction at p.

where Np = #E(Fp) is as defined before. One can think of ap as a piece of data which describes
the behaviour of the reduction curve modulo p. Next, we define the local part at p to be:

Lp(X) =



1− apX + pX2, if E has good reduction at p;

1−X, if E has split multiplicative reduction at p;

1 +X, if E has non-split multiplicative reduction at p;

1, if E has additive reduction at p.

Using the local part at p, we can now associate any elliptic curve E/Q with a new object
called the L-function.

Definition 4.20. Let E/Q be an elliptic curve. The L-function of E is defined to be

L(E, s) =
∏

p prime

1

Lp(p−s)
.

More explicitly, the L-function of E is given by the Euler product

L(E, s) =
∏
p bad

(1− app−s)−1
∏

p good

(1− app−s + p1−2s)−1,

where the first product is over primes where E has bad reduction (called bad primes) and the
second product is over primes where E has good reduction (called good primes). We previously
mentioned that ap contains modulo p data for the elliptic curve E. So looking at how the L-function
is defined above, we see that L(E, s) contains information for reduction curves Ẽ modulo p for all
prime numbers p. While this seems like nothing unusual at the moment, there is an important
conjecture which claims that it is enough to understand L(E, s) if we want to understand the rank
of the Mordell-Weil group E(Q) (which is still currently a mystery).
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The nice thing about the L-function is that we can expand it into a Dirichlet series. Using
the well-known geometric series identity, we can write

1

1− app−s
=

∞∑
k=0

(app
−s)k = apkp

−sk

for the primes of bad reduction, where we have put apk = (ap)
k. For the primes of good reduction,

it is a bit more complicated. We expand the good prime factor to get

1

1− app−s + p1−2s
=

∞∑
k=0

(app
−s − p1−2s)k

= 1 + app
−s + (a2p − p)p−2s + (a3p − 2pap)p

−3s + · · ·

= 1 + app
−s + ap2p

−2s + ap3p
−3s · · · ,

where we have put ap2 = a2p − p and ap3 = a3p − 2pap. In general, we define this recursively

apk+1 = apkap − papk−1 ,

for all positive integer k. Then, we put amn = aman if gcd(m,n) = 1 for the other coefficients. This
is a consequence of the observation that an defines a multiplicative function. Finally, we define
a1 = 1. We then make the fundamental observation that in both good and bad prime factors, we
get a series that looks like

∞∑
k=0

apk

(pk)s
.

Since the L-function is the Euler product of these factors, and since an is multiplicative, it follows
by unique factorization in Z that indeed the L-function can be written as a Dirichlet series

L(E, s) =

∞∑
n=1

an
ns
.

Using Hasse’s estimate (Theorem 4.10), one can show that the Dirichlet series of L(E, s) converges
for all s ∈ C in the half-plane Re(s) > 3

2 . What is really not obvious is the fact that L(E, s) has an
analytic continuation to all of C. This is a consequence of the Taniyama-Shimura-Weil conjecture
(now a theorem called the modularity theorem) which is a very deep result. To talk about this,
we have to first define modular and cusp forms.

Definition 4.21. Let N be a positive integer. The principal congruence subgroup of level
N is defined to be the set

Γ(N) = {M ∈ SL2(Z) :M≡ I mod N} ,

where I is the 2× 2 identity matrix.

Definition 4.22. A subgroup Γ ⊆ SL2(Z) is called a congruence subgroup (of level N) if
Γ(N) ⊆ Γ for some positive integer N .

It can be easily proven that these are really subgroups of SL2(Z) for all positive integer N .

Example. Typical examples.

(i). Γ0(N) =

{
M∈ SL2(Z) :M≡

(
∗ ∗
0 ∗

)
mod N

}
.

(ii). Γ1(N) =

{
M∈ SL2(Z) :M≡

(
1 ∗
0 1

)
mod N

}
.

We shall need some more definitions. From now on, denote H = {z ∈ C : Im(τ) > 0} to be
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the upper half plane.

Definition 4.23. For any γ =
(
a b
c d

)
∈ SL2(Z), we define the following:

(1). The factor of automorphy for z ∈ H is defined to be j(γ, z) = cz + d.

(2). Let k ∈ Z. The weight-k operator [γ]k is a map Hom(H,C)→ Hom(H,C) defined by

(f [γ]k)(z) = j(γ, z)−kf(γ(z)), for all z ∈ H,

where we have written [γ]k(f) = f [γ]k.

Note that the definition of the weight-k operator does not require the function f to be either
holomorphic or meromorphic on H.

Definition 4.24. Let k ∈ Z and let Γ ⊆ SL2(Z). A function f : H → C is said to be weakly
modular of weight k with respect to Γ if it is meromorphic on H and f [γ]k = f for all γ ∈ Γ.

By definition of the congruence subgroup Γ ⊆ SL2(Z), we can always find a translation matrix
of the form (

1 h

0 1

)
, (4.16)

which maps z 7→ z + h for some minimal h ∈ Z+. This is due to Γ containing the principal
subgroup Γ(N) which contains matrices of the form(

1 N

0 1

)
.

For example, we see that the matrix ( 1 1
0 1 ) is an element of the congruence subgroups Γ0(N) and

Γ1(N). Now, define D = {z ∈ C : |z| < 1} ⊆ C to be the open unit disk centred at 0, and define its
punctured disk by D∗ = D \{0}. With notation of h and Γ as defined above (so Γ is a congruence
subgroup), we give the following proposition.

Proposition 4.3. Let f : H → C be a weakly modular function of weight k with respect to Γ.
Then f is periodic of period h and there is a function g : D∗ → C such that f(z) = g(qh), where
qh = qh(z) = e2πiz/h.

Proof. Let γ be the matrix (4.16). We compute the factor of automorphy to be j(γ, z) = 1 and so
by definition of weakly modular, we observe that

f(z) = f [γ]k = f(γ(z)) = f(z + h).

This implies that f is periodic of period h. From complex analysis, we know that the function
qh(z) = e2πiz/h, which is periodic of period h, is a holomorphic function H → D∗. Now consider
the function g : D∗ → C defined by

g(qh) = f

(
h log qh

2πi

)
so that f(z) = g(qh). Since f is periodic of period h, we are allowed to choose any branch of log qh

in H and so g is well-defined. �

Using the notation in the proof above, notice that f being holomorphic on H implies that g
is holomorphic on D∗ and so has a Laurent series expansion on D∗,

f(z) =
∑
n∈Z

an(f) qnh ,
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where qh = e2πiz/h and an ∈ C. This series expansion is also called the Fourier expansion of f . If
g is in fact bounded on the punctured neighbourhood D∗, then q = 0 is a removable singularity of
g or equivalently, g is holomorphically extendable to q = 0. This implies that the negative power
terms in the Fourier expansion of f vanishes. That is, the Fourier expansion of f is given by

f(z) =

∞∑
n=0

an(f) qnh .

In this special case, we say that f is holomorphic at ∞.

To make our discussion of cusp forms complete, we have to define the so-called cusp of a
congruence subgroup Γ.

Definition 4.25. Let Γ ⊆ SL2(Z) be a congruence subgroup. The set of Γ-equivalence classes of
points in P1(Q) = Q ∪ {∞} is called the cusp of Γ.

Let α ∈ SL2(Z). It can be shown that if f is a weakly modular form of weight k with respect
to Γ, then f [α]k is a weakly modular form of weight k with respect to α−1Γα (for this, one need
to show that α−1Γα is a congruence subgroup). Consequently, it makes sense to say that f [α]k is
holomorphic at ∞ as we did for f . Moreover, we now know that it makes sense to talk about the
Fourier expansion of f [α]k.

Definition 4.26. Let k ∈ Z, and let Γ ⊆ SL2(Z) be a congruence subgroup. A function f : H → C
is said to be a modular form of weight k with respect to Γ if

(1). f is holomorphic,

(2). f [γ]k = f for all γ ∈ Γ,

(3). f [α]k is holomorphic at ∞ for all α ∈ SL2(Z).

If moreover we have that a0(f [α]k) = 0 for all α ∈ SL2(Z) in the Fourier expansion of f [α]k, we
say that f is a cusp form of weight k with respect to Γ.

Let f be a modular form of weight k with respect to Γ, we now make the subtle observation
that the holomorphy of f [α]k at ∞ is in fact related to the holomorphy at the cusps of Γ. For any
cusp s, we will write s = α(∞) for some α ∈ SL2(Z) (this notation can actually be justified so it
is not that we will write but actually we can write). We then consider the weight-k operator [α]k

which is given by
f [α]k(z) = j(α, z)−kf(α(z)).

Observe that the factor of automorphy j(α, z) cannot be 0 nor ∞ anywhere. So as z → i∞, we
see that f [α]k(z) → ∞ on the left-hand side, and f(α(z)) → f(s) on the right-hand side. So the
condition (3) in the definition above is equivalent to saying that f is holomorphic at all cusps.

4.5.2 Modularity theorem and its consequences

We are now finally in a position to state the modularity theorem. We give a rather simplified
version (based on Silverman-Tate [26]) suitable with the exposure we have given so far. For the
more complete version, we invite the readers to see Chapter 8 and 9 of Diamond-Shurman [5]. For
the brave readers seeking the original research papers, see [3], [30] and [31].

Theorem 4.11 (Modularity theorem, version 1). Let E/Q be an elliptic curve with L-function
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L(E, s) =
∑
an/n

s . Define the function f : H → C by its Fourier expansion

fE(z) =

∞∑
n=1

anq
n,

where q = q(z) = e2πiz and the an are the same coefficients in L(E, s). Then there exists an integer
NE, called the conductor of E, so that fE(z) is a cusp form of weight 2 with respect to Γ0(NE).

Definition 4.27. We say that an elliptic curve E/Q is modular if the L-function of E has the
property as described in Theorem 4.11.

Theorem 4.12 (Modularity theorem, version 2). Every elliptic curve E/Q is modular.

As mentioned before, the modularity theorem has the following powerful consequences.

Theorem 4.13. Let E/Q be an elliptic curve and let L(E, s) be its L-function. Then the function

Λ(E, s) = N
s/2
E (2π)−s Γ(s)L(E, s),

where NE is the conductor of E (as in Theorem 4.11) and Γ is the gamma function, satisfies the
functional equation

Λ(E, s) = ±Λ(E, 2− s)

for all s ∈ C. Furthermore, L(E, s) has an analytic continuation to all of C.

For a reference of this theorem, see Theorem 8.8.3 and Section 5.10 of Diamond-Shurman [5].
In particular, see Theorem 5.10.2 in that section.

Let E/Q be an elliptic curve. We know by the Mordell-Weil theorem that E(Q) ∼= E(Q)tors⊕
Zr for some positive integer r. Mazur’s torsion theorem characterizes the torsion points and the
Nagell-Lutz theorem gives an effective method to compute them. However, we have yet to discuss
the rank of E(Q). This is because of the fact that the rank is still an unsolved problem. For a
start, we do not know how big can the rank be i.e. we do not have an upper bound at all.

Conjecture 1. There exist elliptic curves E/Q such that its Mordell-Weil group E(Q) has arbi-
trarily large rank.

Here are some evidences of why some mathematicians believe this conjecture is true.

Example (Nagao-Kouya [14]). The elliptic curve E21/Q given by the minimal model

y2 + xy + y = x3 + x2 − 215843772422443922015169952702159835x

− 19474361277787151947255961435459054151501792241320535

has rank > 21. That is, E21 has at least 21 independent rational points of infinite order.

Example (Elkies [16]). The elliptic curve E28/Q given by the Weierstrass equation

y2 + xy + y = x3 − x2 − 20067762415575526585033208209338542750930230312178956502x

+ 34481611795030556467032985690390720374855944359319180361266008296291939448732243429

has trivial torsion and rank > 28. That is, E28 has only 1 finite order rational point, and at least
28 independent rational points of infinite order.

Now, this is where the modularity theorem comes into the bigger picture. By Theorem 4.13,
we now know that it is sensible to talk about the behavior of (the continued) L(E, s) at s = 1.
This is very important as there is a conjecture which relies on this fact that says that the order
of vanishing of L(E, s) at s = 1 is exactly the rank of E(Q). This is the famous conjecture of
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Birch and Swinnerton-Dyer which is one of the seven Millenium Problems that pays $1,000,000 to
anyone that solves it (only one has been proven so far — the Poincaré Conjecture).

Conjecture 2 (Birch and Swinnerton-Dyer Conjecture). Let E/Q be an elliptic curve. Then the
order of vanishing of L(E, s) at s = 1 is the rank of the Mordell-Weil group E(Q). That is,

L(E, s) = (s− 1)rg(s),

for some function g such that g(1) 6= 0,∞ implies that E(Q) has rank r.

The most remarkable thing about the Birch and Swinnerton-Dyer conjecture is that it relates
something analytic (the order of vanishing) to something completely algebraic (the free rank of the
Mordell-Weil group), whereas the connection is far from obvious before this conjecture was made.
Coates and Wiles proved in [4] that L(E, 1) = 0 for a special class of elliptic curves E/Q (called
elliptic curves with complex multiplication) whenever their Mordell-Weil group E(Q) is infinite.
This is one of the many evidences that the conjecture might indeed be true.

For the study of elliptic curves, one important corollary of the conjecture is that it implies
that E(Q) is infinite if and only if L(E, 1) = 0. That is, E(Q) is infinite whenever its rank is > 0.
Moreover, if the Birch and Swinnerton-Dyer conjecture is proven to be true, we would finally have
an algorithm to compute all the rational points on E/Q [5]. So solving this conjecture will really
be a huge milestone for the problem of rational points on elliptic curves, and hence, on nonsingular
cubic curves.
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5 Beyond the Cubics

When introducing the notion of birational equivalence, we mentioned that it is a good candidate
for classifying curves up to some sort of isomorphism in algebraic geometry. This isomorphism is
called birational isomorphism. Based on our discussions throughout the paper, we see that the
degree of a curve is not a good criteria for classification in this sense since it is not an invariant.
For example, we have proved that the unit circle is birationally equivalent to a line, where the
former has degree 2 and the latter has degree 1. However, we can classify curves by defining an
invariant which is dependent on the degree. This invariant is known as the genus of a curve.

Definition 5.1. Let C be a nonsingular curve in P2(C) with degree d. Then the genus of C is
defined by

g = g(C) =
(d− 1)(d− 2)

2
,

which is a non-negative integer. Of course, this definition has a natural extension by replacing C
with a general field K.

The genus has many intepretations. A nonsingular curve C defined over Q can be viewed as
a curve defined over C since Q ⊆ C. The graph of the curve C over C defines a compact one
dimensional complex manifold (i.e. a Riemann surface). The same graph can be viewed as a two
dimensional compact, orientable surface over R. So when viewed in this way, the genus can be
interpreted as the number of holes or handles of the surface defined by C. We shall not prove
that the genus is really an invariant, but for the curious readers, we suggest reading Section II.5 of
Silverman [24]. This section formulates the Riemann-Roch theorem which captures the existence
and uniqueness of the genus, and implies the invariance of the genus.

Example. All the curves below are defined over Q.

(i). The line L : y = mx + c is a nonsingular curve with degree 1. Its genus is computed to be
g(L) = 0.

(ii). The unit circle C : x2 +y2 = 1 is a nonsingular curve with degree 2. Its genus is computed to
be g(C) = 0. Since L and C are birationally equivalent, this is one verification that indeed
the genus is an invariant.

(iii). Any nonsingular (i.e. nondegenerate) conic C has degree 2 and so has genus g(C) = 0.

(iv). An elliptic curve E (which is nonsingular by definition) has degree 3 and so has genus

g(E) =
(3− 1)(3− 2)

2
= 1.

Viewed as a curve defined over C, i.e., as a compact Riemann surface, an elliptic curve thus
corresponds to a torus.

5.1 Faltings’ theorem

We have proved that one can get infinitely many rational points from one rational point on a
nonsingular conic. We have also showed examples of an elliptic curve having infinitely many
rational points (when there is a point of infinite order). This tells us that curves of genus 0 and
1 can have infinitely many distinct rational points on them. How about for curves of genus 2 and
higher? Mordell conjectured in 1922 that this is not possible. It was not until 61 years later that
someone managed to prove this conjecture. This was the work of Gerd Faltings for which he won
a Fields Medal for it.
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Theorem 5.1 (Faltings, 1983). Let C be a nonsingular curve defined over Q of genus g > 1. Then
C has only a finite number of rational points.

This gives a hint towards super hard problems like Fermat’s last theorem.

Example. It is a well-known fact that the Fermat equation X3 + Y 3 = Z3 has no nontrivial
integer solutions so let us look at the case where the exponent is > 3. The projective curve

Ĉ : F (X,Y, Z) = Xn + Y n − Zn = 0

defined by the Fermat equation, where n > 3, is the projective closure of the affine curve

C : xn + yn = 1.

Accordingly, the (primitive) integer solutions to the Fermat equation corresponds bijectively to the
rational points on the Fermat curve. If we compute the tangent vector of F , we see that

∇F =


nXn−1

nY n−1

nZn−1

 ,

which vanishes only at (X,Y, Z) = 0. But by definition, 0 /∈ P2 where Ĉ is defined on and so Ĉ is
a nonsingular curve. So it has a genus computed to be

g =
(n− 1)(n− 2)

2
> 1,

where the bound is true for all n > 3. Accordingly, Faltings’ theorem can be applied and so we
conclude that C has only finitely many rational points. The correspondence between solutions
thus implies that the Fermat equation Xn + Y n = Zn has only finitely many integer solutions for
n > 3.

5.2 Fermat’s last theorem

Let us talk about a bit of history in proving Fermat’s last theorem. Somewhere around 1637,
Fermat claimed that he had a proof that the Fermat equation

Xn + Y n = Zn, (5.1)

has no solution (x, y, z) ∈ Z3 with xyz 6= 0 for n > 3; although no evidence of the proof had
actually been found. Observe that since n > 3, it is enough to consider only two cases for this
problem: when n = 4 or when n = p an odd prime. This is because n is divisible by either 4 or
p (or both). To see this more clearly, suppose (x, y, z) ∈ Z3 is a solution to (5.1). If n = 4` for
some ` ∈ Z, then we have that (x`, y`, z`) is a solution to the Fermat equation of exponent 4. If
n = pk for some k ∈ Z, then we that (xk, yk, zk) is a solution to the Fermat equation of exponent
p. So proving that (5.1) has no nontrivial solutions for the case n = 4 or n = p an odd prime is
sufficient due to the contrapositive statement. The case when n = 4 is settled by Fermat himself
and can be considered the simplest case of Fermat’s last theorem (yes, not n = 3). This was done
by proving the following stronger result using Fermat’s method of infinite descent.

Proposition 5.1. There are no integer solutions (x, y, z) with xyz 6= 0 such that x4 + y4 = z2.

So the problem of Fermat’s last theorem becomes a problem of showing that there is no nontrivial
integer solution to the equation Xp + Y p = Zp for all p > 3 an odd prime.

In the year 1770, the case with p = 3 was solved by Euler which also utilized the method of
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infinite descent. One of the major steps in this case was to find cubes of the form p2 + 3q2. Euler
cleverly showed that given any two integers a, b ∈ Z, defining

p = a3 − 9ab2, q = 3(a2b− b3)

ensures that p2 + 3q2 = (a2 + 3b2)3 which is a perfect cube. The problem comes when he tried to
prove the converse, concluding that if p2 + 3q2 is a cube, then there must exist integers a, b ∈ Z
such that p2 + 3q2 = (a2 + 3b2)3. To do so, he introduced the ingenious idea of extending Z to
include the algebraic numbers x + y

√
−3 where x, y ∈ Z (today, this extended integers should be

familiar as Z[
√
−3] and has been fairly well-studied). Using this new idea, he can then for example

write p2 + 3q2 = (p+ q
√
−3)(p− q

√
−3) and work from there. His initial attempt contains serious

logical gaps such as implicitly assuming that the extended integers has unique factorization (which
coincidentally it has) just like Z. Nevertheless, Euler eventually published a complete and correct
proof using techniques he developed in his work on the sums of two squares.

The next case p = 5 was initially “solved” by Dirichlet in September 1825, but it turns out
that this was an incomplete proof and it only takes care of what is called the first case of p = 5.
Dirichlet’s approach to the first case is basically to try mimicking Euler’s proof in the case p = 3,
ending up with needing to prove a similar looking claim: if p2−5q2 is a fifth power, then there must
exist integers a, b ∈ Z such that p+ q

√
5 = (a+ b

√
5)5. However, it turns out that directly copying

Euler’s method was not enough and some additional conditions were required. The complete proof
which covers both the first case and the second case of p = 5 was eventually given by Legendre
(independently of Dirichlet) in September 1825. The case p = 7 was harder; and this is reflected
by the fact that in 1832, Dirichlet managed to proved the case p = 14 (not a prime, but we want
to be consistent in notation) but not p = 7. The case p = 7 ended up being proved by Lamé in
1839 using completely new techniques (which explains why Dirichlet failed).

In 1847, Lamé announced at the Paris Academy that he had found a proof to solve the
general case of Fermat’s last theorem. The idea is again based on infinite descent. He introduced
the usage of the complex p-th roots of unity ζ = e2πi/p which generates all p distinct complex
solutions 1, ζ, . . . , ζp−1 to the polynomial equation xp − 1 = 0. Such a polynomial thus have a
factorization into linear factors

xp − 1 =

p∏
k=1

(x− ζk−1).

If we put x = −X/Y , multiply through by (−Y )p, and make use of the condition that p is odd,
we end up with the factorization

Zp = Xp + Y p =

p∏
k=1

(X + ζk−1Y ) = (X + Y )(X + ζY ) · · · (X + ζp−1Y ),

which is the equation that forms the basis of Lamé’s proof. The idea then is to show that each of
the factors (X+ζk−1Y ) are relatively prime to each other which implies that these factors must be
a p-th power, leading to an infinite descent. The problem in this proof, however, is that it requires
unique factorization i.e. it needs the factors appearing above to be prime factors — which is true
if we are in Z but unknown (at that time) in this extended Z plus some complex numbers setting.
Liouville, whom Lamé himself acknowledged to be the one suggesting the entire idea, suspects that
unique factorization breaks in general (which turns out to be true), making the argument fail.

It was finally Kummer, in 1850, who managed to prove the first general case of Fermat’s last
theorem — the case for which p > 3 is a regular prime. Assuming (very) little algebraic number
theory, we define briefly what this mysterious prime is (for a proper treatment, see [27] or any
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algebraic number theory textbook). Let p be an odd prime, let ζp be a p-th root of unity and
consider the p-th cyclotomic field

Q(ζp) =
{
a0 + a1ζp + · · ·+ ap−1 ζ

p−1
p : ai ∈ Q

}
.

This is a number field as it is a finite field extension of Q. In fact, Q(ζp) is a Galois extension of
Q. We can then define a so-called class group Hp, which is a quotient group, associated to the ring
of integers O of Q(ζp). Further define the class-number hp to be the order of this class group Hp.
We then say that p is regular if hp is not divisible by p. It is known that there are infinitely many
irregular (not regular) primes, the smallest being 37. However, it is not yet known whether there
are infinitely many regular primes but this is a conjecture that mathematicians believe to be true.
The primes 3, 5, 7 are all regular primes so the result of Kummer agrees with what we knew from
the work of Euler, Dirichlet, Legendre and Lamé.

The breakthrough that ultimately lead towards the correct proof of Fermat’s last theorem is
the discovery of a certain elliptic curve by Frey in 1984. This elliptic curve, now known as the
Frey curve, relies on assuming the falsehood of Fermat’s last theorem and is constructed as follows:
suppose that (a, b, c) ∈ Z3 with abc 6= 0 is a solution to the Fermat equation of exponent p > 5,
then the Frey curve is defined to be the rational elliptic curve

Ea,b,c : y2 = x(x− ap)(x+ bp).

Frey realized that this elliptic curve obeys some interesting properties: one of which is that it is
semistable (i.e. if Ea,b,c has bad reduction at a prime p, then the reduction is multiplicative) with
conductor

NEa,b,c
=
∏
`|abc

`,

where the product is over all distinct primes ` | abc. Most importantly, Frey suggested that the Frey
curve Ea,b,c cannot be modular. This conjecture was made precise as statements about modular
forms and Galois representations by Serre and was then known as the ε-conjecture. Ribet eventu-
ally proved this conjecture in 1986 using his level-lowering theorem. The work by Serre and Ribet
forms an important bridge between the Taniyama-Shimura-Weil conjecture (now Theorem 4.12)
and Fermat’s last theorem. How? Well, the existence of the non-modular Frey curve requires Fer-
mat’s last theorem to be false. So, if the Taniyama-Shimura-Weil conjecture is true, then no such
curve should exist and so by the contrapositive, Fermat’s last theorem is true. Therefore, proving
Fermat’s last theorem reduces to proving the Taniyama-Shimura-Weil conjecture. Wiles, with a
little help from his former student Taylor, finally proved the Taniyama-Shimura-Weil conjecture
for semistable rational elliptic curves in the year of 1995. Despite not proving the full conjecture,
this was sufficient to imply the impossible existence of the non-modular semistable Frey curve, thus
proving Fermat’s last theorem. Building on Wiles’ work, the full Taniyama-Shimura-Weil conjec-
ture (as in the statement of Theorem 4.12) was eventually proved by Breuil, Conrad, Diamond
and Taylor.
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